生物浸出技术在贵金属二次资源回收中的应用

摘要:贵金属因其独特的物化性质广泛应用于高新技术领域,在催化、能源、光电和医药等多领域具有重要价值。我国贵金属矿产资源较为匮乏,但作为工业体系健全的制造业大国,对贵金属的需求巨大,使得供需矛盾异常突出。开展贵金属二次资源回收能够缓解我国贵金属供需矛盾并带来巨大的经济效益。传统冶金方法在贵金属二次资源回收工艺上存在着诸多问题,例如能耗高、成本高、流程长、环境污染严重等。生物浸出作为一种新兴的绿色技术,具有绿色环保、能耗低、成本低、选择性高等优点,在贵金属资源利用方面得到广泛关注,成为目前贵金属冶金科学研究的热点。本文综述了生物浸出贵金属的研究进展,包括涉及的微生物种类、作用机制、影响因素以及该技术面临的挑战与发展前景。

激光增材制造高熵合金强化机制的研究进展

摘要:随着航空事业的飞速发展,对合金材料的性能提出了更高要求。在传统合金材料性能提升空间逐渐受限的背景下,高熵合金凭借其独特的多主元设计,不仅在力学性能上表现优异,还在耐腐蚀、耐高温等方面展现出其独到之处,成为最具发展潜力的材料之一。激光增材制造技术为高熵合金的设计与制造提供了新的工艺技术途径,确保了成形件具有结构致密、组织均匀等优势。本文总结了激光增材制造高熵合金强化机制方面的研究进展,列举了包括应变诱导孪晶强化、变形诱导相变强化、细晶强化、固溶强化以及第二相强化等机制的典型案例,重点阐述了工艺特性对强化机制的显著影响。结果表明,激光增材制造技术的工艺特点能够增强高熵合金强化机制的效果,进而提升合金的力学性能。

铁捕集铂族金属合金的电化学回收工艺研究

摘要:低温铁捕集技术是一种从废催化剂中富集铂族金属(PGMs)的有效技术。然而,铁捕集得到的铁-铂族金属合金具有硬度大、惰性高的特点,导致溶解缓慢。此外,废催化剂中的Mn,Ni,Cr等杂质元素也会进入到合金中,造成后续分离困难。本文以铁-铂族金属合金为原料,利用金属间的电化学性质差异,研究直流电解回收铁、阳极泥酸浸和电沉积分离提纯铂族金属。结果表明,Fe2+的氧化以及阴极析氢反应是电解阶段主要的副反应。在电压为1.0 V, 初始Fe2+浓度为0.7mol·L−1,温度为60℃条件下,经2 h电解,铁-铂族金属合金质量损失和阴极电流效率分别达到34.78%和62.97%。合金中的碳等杂质形成外层抑制了离子扩散,阻碍铁溶解。电解后,PGMs由于高电负性难以氧化- 络合溶解, 被富集在阳极泥中。阳极泥经酸浸、过滤后进行直流恒压电沉积, 当电压为0.45 V时,沉积物主要为Pd,微观形貌呈枝状;随着电压的增加,阴极析出Pt和Rh, 沉积层呈块状堆积。在0.65 V下电沉积3h可回收61.83%的Pt,77.28%的Pd以及55.20%的Rh,实现了杂质的去除;动力学研究表明Pd的电极反应速率受扩散过程控制。本文研究为废催化剂中铂族金属的高效、环保回收提供了可靠的新方法。

无添加制备超粗晶碳化钨工艺研究

摘要: 采用无添加方式经高温氢还原制备超粗晶钨粉,对还原过程和钨粉质量进行分析,探讨了工艺条件对钨粉质量的影响。将钨粉与炭黑均匀混合、压制后分别在2 100 ℃和2 300 ℃下进行碳化,对比不同温度所得碳化钨的微观组织。结果表明:在1 300 ℃以上和较高的水汽分压条件下能够产出平均粒度为30 μm 以上、粒度均匀且团聚少的钨粉。在较高温度下碳化能够产出成分单一、耐磨性好、缺陷少的超粗晶碳化钨粉。2 300 ℃下所得碳化钨制备的硬质合金平均粒度达到8.1 μm,比2 100 ℃下所得碳化钨制备的硬质合金具有更高的抗弯强度和抗冲击磨损性能。

激光增材制造相变诱导型高熵合金的研究进展

摘要:高熵合金是以4种及以上元素为主元的合金,热力学上存在高熵效应,动力学上呈现迟滞扩散效应,晶体学上表现为晶格畸变效应,使用时展现出鸡尾酒效应,具有良好的力学性能和耐腐蚀性。相变诱导塑性高熵合金通过在变形过程中发生马氏体相变,延迟了裂纹的产生,同时提高了金属的加工硬化率,解决了塑性-强度难题,具有极大的研究潜力和应用前景。铸造高熵合金存在偏析严重、晶粒粗大等缺陷,成形样品力学性能差。增材制造具有局部熔池快速凝固的特点,成形的高熵合金成分均匀、晶粒细小,力学性能远高于铸件。本文阐述了增材制造成形相变诱导塑性高熵合金的显微组织、力学性能、组织演变、耐蚀性等方面的研究进展,并展望了未来的研究方向。

酸化生物炭负载锰材料对Pb(Ⅱ)的吸附性能及机理研究

摘要: 水体中重金属污染问题越来越被水环保领域研究人员所重视,如何高效去除水体中重金属问题被广泛研究。研究利用农林废弃物核桃壳作为原材料,制备出核桃壳衍生生物炭材料(WC)以及改性生物炭材料(SMWC)。并对其进行表征分析,研究材料的物理微观以及吸附特征性质,表征结果表明,改性后的炭材料表面孔隙中聚集较多的细小颗粒,增加了表面的粗糙程度;较改性前O—C=O、C—O 和O-Mn-O 基团的含量有所增加。研究了外界条件对SM-WC去除Pb(Ⅱ)的吸附性能影响。结果表明,在温度298K下,pH=5.5,SM-WC投加量为0.4g/L,Pb(Ⅱ)浓度为20mg/L的条件下,模拟吸附水中Pb(Ⅱ)的效率最高,去除率为93.8%。根据吸附动力学、等温线和热力学分析表明:SM-WC对Pb(Ⅱ)的吸附过程更符合拟二级动力学和Langmuir等温吸附模型,属于单分子层吸附,并且以化学吸附为主。

半导体用高纯金制备技术及应用研究进展

摘要:综述了目前制备高纯金的各种方法的原理及工艺,并对其优缺点进行了分析。化学还原分离法效率高、周期短,但酸耗大、污染严重;熔融氯化法对原料适应范围广,但存在氯化过程复杂、工艺难于精准控制和产品质量不稳定等不足;溶剂萃取法效率高、产品质量稳定,但试剂消耗大、有机污染严重和易燃易爆;电解法具有成本低、除杂效果好、产品纯度稳定性强及环境污染小的优点,但原料适应性相对较差、生产周期相对较长且会积压金。高纯金具体应用形式为键合用金丝、溅射靶材及高纯度金基合金,涉及电子、半导体及航空航天等领域。

砷化镓废料回收再生研究进展

摘要:随着科技的进步与发展,以砷化镓为代表的二代半导体材料已逐渐取代硅材料应用于电子通讯、国防、航空航天等领域。每年在砷化镓晶体制备、设计加工、产品应用环节都会产生大量废料函待处理。砷化镓废料作为含砷有毒废弃物,蕴藏着品位高、存量大的碑、资源,近年来砷化镓废料的清洁、高效回收受到广泛关注。从砷化镓产业链角度出发,总结了上、中、下游产生的砷化镓废料来源与成分间的差异,详细综述了砷化晶体切割废料、砷化镓加工废料、废旧砷化镓电子器件这3类砷化镓废料二次资源的回收工艺与现状,归纳了不同方法的技术指标及工艺特点,重点对真空热分解法处理砷化废料的相关研究进行了探讨,并展望了砷化废料回收技术的未来发展方向。

TZM 钼合金箔材退火行为研究

摘要:TZM 钼合金具有比纯钼更优异的力学性能和更高的再结晶温度,适用于更广泛的应用场景,TZM 箔材可以替代纯钼箔材应用于电子等领域.通过研究TZM 箔材经过不同退火温度和高温短时退火热处理的显微组织和力学性能,发现900℃的退火可以使箔材完成去应力,并出现最大延伸率;高温短时退火提升了材料的抗拉强度,2次高温短时退火后箔材具有最大强度和较高的延伸率;杯突测试显示出与力学性能类似的规律,900℃退火使材料具有最大杯突值3mm,经过2次高温短时退火后杯突值提高23%.

碲化铋基柔性热电器件研究进展

摘要:碲化铋基柔性热电器件具有体积小、质量轻、可变形、可弯折的特点,能够实现高密度阵列集成,契合未来电子信息领域对高性能、微型化、低功耗器件的发展需求。该种器件适用于复杂几何结构和不规则曲率变化的表面,能够满足物联网、可穿戴设备、微电子芯片行业对微能源供应、小空间快速制冷、个人热量管理的需求。综述了近年来碲化铋基柔性热电器件研究进展和存在的问题,并对其未来的发展方向进行了展望。虽然碲化铋基柔性热电器件的研究取得了一定的进展,但整体上仍处于实验室阶段,实现大规模商用应用还有一段距离,今后应侧重于输出功率的提升、穿戴舒适性和美观性、服役稳定性和使用寿命,以及降低制造难度方面的研究。碲化铋基柔性热电器件主要分为块体型、薄膜型和纺织物型3大类型。块体型器件的输出功率一般可达1×10−5W·cm−2,但其柔韧性和穿戴舒适性不足,可通过提高碲化铋基热电材料本身的ZT 值、优化负载电阻、选择热导率低的封装材料,以及合理设计封装元件尺寸和热电臂的形状、数目和连接方式等方法来持续提高其热电性能,可通过开发柔韧性更高、甚至具备自愈能力的封装材料和连接材料来提升其柔韧性和穿戴舒适性。薄膜型器件的输出功率一般在1×10−6—1×10−9 W·cm−2 之间,还达不到实际应用需求,通过提升碲化铋基薄膜制备技术并优化工艺参数来提高薄膜本身热电性能,开发热稳定性、电阻率、导热系数更优的热电界面材料,从而降低接触热阻导致的界面热损失,提高输出功率和转换效率,通过选择柔韧性和机械稳定性更高的基底材料来其使用寿命。纺织物型器件具有较好的拉伸、弯曲和剪切性能,能满足穿戴的舒适性要求,但热电性能较差,输出功率也普遍在1×10−6—1×10−9W·cm−2之间,且稳定性不足,可通过改进涂印和浸渍工艺来提高纱线表面碲化铋基热电材料的均匀性,创新热电纱线组装的结构以在织物厚度方向上更好地建立温差,从而提高其热电性能。本研究为碲化铋基柔性热电器件的应用提供了理论参考。