镁合金建筑模板的表面化学镀与耐蚀性能

摘要:采用化学镀的方法在镁合金建筑模板表面分别制备了单一Sn膜、单一Zn膜和复合Sn-Zn膜,对比分析了pH、温度和膜层数对镁合金表面膜层显微形貌和电化学性能的影响。结果表明:对于单一膜,在pH值为6.0、温度为75 ℃时制备的单一Sn膜和在pH值为9.5、温度为75 ℃时制备的单一Zn膜都具有较好成膜质量;当膜层数为9时,复合Sn-Zn膜完全覆盖镁合金基体且膜层成膜质量较好。相较于镁合金基体,单一Sn膜、单一Zn膜、复合Sn-Zn膜的腐蚀电位都发生正向移动,腐蚀电流密度发生不同程度减小,复合Sn-Zn膜的腐蚀电位最正、腐蚀电流密度最小。在镁合金基体表面化学镀单一Sn膜、单一Zn膜、复合Sn-Zn膜都有助于提升镁合金的耐蚀性能,且复合Sn-Zn膜对基体的保护作用要优于单一Sn膜、单一Zn膜。

化学镀法制备银包铜粉研究进展

摘要:银包铜粉具有优异的导电、抗氧化、抗菌和催化活性,并且具备成本经济性,被视为银粉的理想替代品,目前已在光伏、电子、医药和催化等多个领域得到应用。化学镀法是目前制备银包铜粉的最主要方法,该方法中需要使用多种化学试剂,然而现有综述文献鲜有对该方法中常用试剂的种类及作用进行阐释。本文详细阐述了不同种类试剂在化学镀法制备银包铜粉过程中的作用及机理,分析对比了不同试剂种类、工艺路线的优缺点,并展望了银包铜粉的研究趋势与技术发展方向。

激光选区熔化成形高强钛合金研究现状及展望

摘要:以近/亚稳β钛合金为代表的高强钛合金具有高的比强度、良好的塑性加工性能、优异的淬透性以及可通过热处理强化获得强度-塑性-韧性匹配,已广泛应用于航空航天等领域重大装备承力构件。激光选区熔化(SLM)作为钛合金增材制造领域的一项重要技术,具有可以实现近净成形、复杂结构一体化成形等显著优势,成为航空航天制造领域的重点发展技术和前沿方向。本文围绕SLM成形原理和特点,从SLM成形高强钛合金经历极高加热/冷却速率以及独特的热循环历史出发,重点介绍了高强钛合金微观结构特征、相组成以及力学性能特点。总结了SLM高强钛合金热处理工艺种类及其主要影响规律,旨在为获得优异的力学性能匹配提供参考。最后,根据对现有研究成果的分析,总结了SLM成形高强钛合金研究面临的挑战,并对未来该领域可能的研究方向作了展望。

铜合金的腐蚀与防护研究进展

摘要:铜合金具有良好的导电性和导热性,是应用最广泛的工业材料之一。铜合金服役过程中常与酸、碱、盐等腐蚀介质接触,易引起铜合金的腐蚀, 最终导致失效,对生产制造带来危害。提高铜合金的耐腐蚀性有利于进一步扩展其应用领域。本文主要归纳了Cr,Pb,Ti,Al,Mn,Ni以及稀土元素的添加对合金耐蚀性能的影响,通过合金元素的添加可以改变铜合金表面腐蚀产物膜的组成和形貌,减小相与相之间腐蚀电位差, 以及减少有害杂质的存在,以此来改善铜合金的耐蚀性能。塑性变形和热处理是改善铜合金力学性能的常用手段,经塑性变形和热处理过后的铜合金,其微观组织形貌和分布发生了变化, 因此对合金耐蚀性能也有一定的影响。本文主要从合金化、塑性变形及热处理3个方面对铜合金耐蚀性能影响进行综述,最后对铜合金的腐蚀防护研究进行总结和展望。

镁合金增材制造技术研究与展望

摘要:镁合金是最轻的金属结构材料,具有密度低、比强度、比刚度高、阻尼减震性能好、生物降解性良好等优点。传统的镁合金制造方式(铸造、挤压等)难以一步制备复杂的几何形状,铸造镁合金因冷却速率较低常常导致晶粒粗大,力学性能较差,挤压镁合金在成形过程中极易产生氧化夹杂等缺陷。相比之下,增材制造技术拥有快速一体化成形的优点,已逐步应用于镁合金的生产制造。目前,镁合金的增材制造技术主要包括:激光粉末床熔融技术(LPBF)、电弧熔丝增材制造技术(WAAM)、搅拌摩擦沉积技术(AFSD)以及粉末床粘合剂喷射技术(BJ)。本文首先综述了镁合金增材制造现状,针对以上4种增材制造技术分析了其成形原理、特性及成形合金特点。讨论了4种增材制造镁合金的研究现状及现存问题,总结了镁合金增材制造技术的优缺点,希望可以推动镁合金增材制造技术的研究进展。

低热应变镁合金研究进展

摘要:镁和镁基合金是重要的轻量化金属材料,广泛应用于汽车、通讯、航空、航天等领域。由于镁合金热膨胀系数较高,当应用于精密器件时易导致组装精密度降低、力学性能下降等问题。因此需要研发低热应变镁基材料,以满足此类应用的要求。本综述对降低镁合金热膨胀系数的原理及方法进行综述,归纳比较了合金化、复合材料和特殊加工工艺等调整镁合金热膨胀系数的主要方法的原理,总结出高熔点元素合金化、高硬度颗粒掺杂、低热膨胀系数纤维掺杂以及热处理结合挤压加工方法等降低镁合金热膨胀系数的有效方法,并对未来该领域的研究趋势进行了展望。

国外镁合金装甲研究发展

摘要: 针对镁合金在轻型装甲车辆和单兵装甲防护中的应用,通过文献分析法对国外镁合金装甲材料的强化处理技术、耐腐蚀性能以及焊接技术的现状进行阐述,分析了镁合金装甲材料在抗弹试验中的抗弹原理与抗弹性能,对比了国内外的镁合金装甲标准与规范现状。我国需要从材料成分设计、大塑性变形、先进热处理工艺以及镁合金材料晶体结构科学研究入手,开展镁合金装甲基础研究和应用研究以及工程化研究,提高镁合金的强度、韧性、耐腐蚀性能、加工性能、可焊性等性能,并同步建立镁合金装甲材料标准体系,规范军用镁合金的应用,为我国国防装备提供高性能镁合金装甲防护材料。

工业纯钛TA1薄带制备工艺对织构与性能的影响

摘要:TA1常温下具有密排六方结构,滑移系较少,对称性较差,塑性变形机制复杂,加工方法不同会导致其各向异性,造成制耳、起皱等缺陷。为解决该问题,本文选用了厚度为0.5 mm的TA1薄带,通过X射线衍射(XRD)、电子背散射衍射(EBSD)、拉伸成形试验及共聚焦显微镜,研究了由于制备工艺不同而产生的不同织构和组织对其性能的影响规律。研究结果表明:金相分析发现强度和塑性指标与平均晶粒度成反比,形变孪晶的存在使拉伸时孪生与滑移相互作用,促进性能上的各向异性;全纵轧时,棱锥面滑移协调c 轴运动,产生棱锥型织构(1- 21- 5),(011- 3),使可开动的滑移系分别为易激活的柱面滑移、较难开动的基面滑移或滑移,产生各向异性;换向轧制会促进(0001),(0001)基面织构的形成,该织构增加了六方晶粒厚度方向的变形阻力,降低薄带各向异性。改变纵轧规程和换向轧制对细化晶粒和提高基面织构组分比例有利。

镁合金表面激光熔覆研究现状

摘要:作为最轻的金属结构材料之一的镁合金,其较差的耐磨蚀性和低硬度限制了在工业中更为广阔的应用。激光熔覆涂层因具有稀释度小、组织致密、涂层与基体结合好等优点,可显著提高镁合金表面硬度和耐磨蚀性,获得密切关注,然而此方面缺乏系统的综述研究。以镁合金涂层材料的设计原则为出发点,首次从二元合金涂层、复合性增强涂层、非晶态合金涂层、高熵合金涂层、功能梯度涂层以及医用材料涂层6 个方面,综述镁合金表面激光熔覆涂层材料设计体系,并分析每种涂层材料体系的性能特点。对镁合金在激光熔覆领域应用亟待解决的问题及未来发展方向进行展望,提出未来应结合超声振动技术、电磁搅拌技术、高频微锻造技术和等离子喷涂技术等辅助技术,协同高通量材料计算模拟,开发用于镁合金激光熔覆的新型高性能合金,为镁合金表面激光熔覆的涂层设计提供参考。

镁合金超疏水涂层研究进展

摘要: 在镁合金基体上构建超疏水涂层可提高镁合金的耐腐蚀性能。介绍了镁合金超疏水涂层的研究进展、超疏水涂层的定义及其疏水原理,归纳了在镁合金基体上制备超疏水涂层的主要方法,对刻蚀法、喷涂法、水热合成法、溶液沉积法、电化学沉积法、溶液-凝胶法等方法进行了重点论述,讨论了各种制备方法的优缺点,分析了目前超疏水涂层制备及应用中所存在的主要问题。结合镁合金超疏水涂层的最新研究进展,指出了镁合金超疏水涂层未来研究及发展趋势是构建双层以及多层粗糙结构的表面,达到提高超疏水涂层的机械性能以及化学稳定性的目的。