石墨烯增强铜基复合材料的挑战及其对策

摘要:铜具有优异的电学性能、热学性能和化学稳定性,被普遍应用于各工业领域。但铜的力学性能相对较差,而限制铜的更进一步应用。如何在提高铜的力学性能的同时维持铜优异的电学和热学性能是目前的研究热点。由于石墨烯凸显的力学、热学和电学性能,以及二维片层结构,因而成为增强铜基复合材料力学性能的理想增强体。但研究者们通过不同的合成方法制备的石墨烯/铜复合材料的性能增强并没有达到预期效果,主要是因为石墨烯在铜基体中易于团聚、铜与石墨烯的润湿性比较差及其制备过程中造成石墨烯的结构受损。随着近几年来研究者的不断探索,一些新的解决方法不断出现。主要综述石墨烯增强铜基复合材料面临的挑战及其应对策略方面的研究进展,并指出石墨烯增强铜基复合材料可能的发展新趋势。

镍基高温合金载能束增材修复技术研究现状

摘要:镍基高温合金在高温下具有较强的抗蠕变、耐氧化和防腐蚀性能,被广泛应用于航空航天发动机和工业燃气轮机等热端部件。在恶劣的工作条件下,热端部件受到磨损、冲击、高温侵蚀和交变应力的作用易产生烧蚀、热裂纹、断裂等损伤,直接影响装备的服役安全。因此,如何恢复镍基高温合金损伤件的使役性能是目前亟待解决的问题。载能束具有能量集中、穿透性强、热输入低等特点,可用于快速恢复镍基合金受损零件的尺寸和性能,且修复区与基体形成良好的冶金结合,为镍基高温合金的优质、高效修复提供了可行途径。本文介绍了激光、电子束、电弧和等离子等载能束增材修复工艺的技术原理,归纳了镍基高温合金修复的瓶颈难题,综述了当前针对镍基合金修复难点所取得的重要研究进展,指出了载能束增材修复镍基高温合金的发展方向。

超高导电铜基材料的研究现状与展望

摘要: 超高导电铜是指导电性能优于国际退火铜标准的一类铜材料,其在机械、电子和电力等领域具有广阔的应用前景。综述了超高导电铜的研究现状,介绍了纯铜、铜合金和铜基复合材料3类超高导电铜体系,其中,最有望实现大规格超高导电铜的材料体系是在铜基体中加入碳纳米管或石墨烯等碳纳米材料。随后,指出了现阶段超高导电铜基复合材料制备存在的3个关键问题: 良好的电学接触界面、优化复合材料的构型和实现碳纳米材料良好的结构/本征性能与均匀分散的协同。基于这3个关键问题,介绍了铸造、电解共沉积、化学气相沉积法、粉末冶金法等一系列有望制备超高导电铜基复合材料的方法,并总结了其优缺点。最后,对超高导电铜未来发展趋势进行了展望。

钛及钛合金粉末制备与成形工艺研究进展

摘要:钛及钛合金因具有密度低、强度高、耐腐蚀、生物相容性好等特点被广泛应用于军事、航空、医疗等领域。传统铸锻钛合金生产工艺复杂,成本高,严重限制了钛合金的应用,粉末冶金技术制备钛合金降低了生产成本,有利于钛合金的推广应用。本文从钛及钛合金粉末的制备与成形工艺方面介绍了粉末冶金钛及钛合金的研究现状,并阐述了其发展趋势。

铝型材挤压生产新技术与装备

摘要:文章介绍了几种新型挤压机,以及近年来国内采用的新型挤压润滑系统、等温挤压、CAE系统应用、封闭式模具碱洗系统、感应式模具加热炉等新技术和设备。

低热应变镁合金研究进展

摘要:镁和镁基合金是重要的轻量化金属材料,广泛应用于汽车、通讯、航空、航天等领域。由于镁合金热膨胀系数较高,当应用于精密器件时易导致组装精密度降低、力学性能下降等问题。因此需要研发低热应变镁基材料,以满足此类应用的要求。本综述对降低镁合金热膨胀系数的原理及方法进行综述,归纳比较了合金化、复合材料和特殊加工工艺等调整镁合金热膨胀系数的主要方法的原理,总结出高熔点元素合金化、高硬度颗粒掺杂、低热膨胀系数纤维掺杂以及热处理结合挤压加工方法等降低镁合金热膨胀系数的有效方法,并对未来该领域的研究趋势进行了展望。

国外镁合金装甲研究发展

摘要: 针对镁合金在轻型装甲车辆和单兵装甲防护中的应用,通过文献分析法对国外镁合金装甲材料的强化处理技术、耐腐蚀性能以及焊接技术的现状进行阐述,分析了镁合金装甲材料在抗弹试验中的抗弹原理与抗弹性能,对比了国内外的镁合金装甲标准与规范现状。我国需要从材料成分设计、大塑性变形、先进热处理工艺以及镁合金材料晶体结构科学研究入手,开展镁合金装甲基础研究和应用研究以及工程化研究,提高镁合金的强度、韧性、耐腐蚀性能、加工性能、可焊性等性能,并同步建立镁合金装甲材料标准体系,规范军用镁合金的应用,为我国国防装备提供高性能镁合金装甲防护材料。

工业纯钛TA1薄带制备工艺对织构与性能的影响

摘要:TA1常温下具有密排六方结构,滑移系较少,对称性较差,塑性变形机制复杂,加工方法不同会导致其各向异性,造成制耳、起皱等缺陷。为解决该问题,本文选用了厚度为0.5 mm的TA1薄带,通过X射线衍射(XRD)、电子背散射衍射(EBSD)、拉伸成形试验及共聚焦显微镜,研究了由于制备工艺不同而产生的不同织构和组织对其性能的影响规律。研究结果表明:金相分析发现强度和塑性指标与平均晶粒度成反比,形变孪晶的存在使拉伸时孪生与滑移相互作用,促进性能上的各向异性;全纵轧时,棱锥面滑移协调c 轴运动,产生棱锥型织构(1- 21- 5),(011- 3),使可开动的滑移系分别为易激活的柱面滑移、较难开动的基面滑移或滑移,产生各向异性;换向轧制会促进(0001),(0001)基面织构的形成,该织构增加了六方晶粒厚度方向的变形阻力,降低薄带各向异性。改变纵轧规程和换向轧制对细化晶粒和提高基面织构组分比例有利。

镁合金表面激光熔覆研究现状

摘要:作为最轻的金属结构材料之一的镁合金,其较差的耐磨蚀性和低硬度限制了在工业中更为广阔的应用。激光熔覆涂层因具有稀释度小、组织致密、涂层与基体结合好等优点,可显著提高镁合金表面硬度和耐磨蚀性,获得密切关注,然而此方面缺乏系统的综述研究。以镁合金涂层材料的设计原则为出发点,首次从二元合金涂层、复合性增强涂层、非晶态合金涂层、高熵合金涂层、功能梯度涂层以及医用材料涂层6 个方面,综述镁合金表面激光熔覆涂层材料设计体系,并分析每种涂层材料体系的性能特点。对镁合金在激光熔覆领域应用亟待解决的问题及未来发展方向进行展望,提出未来应结合超声振动技术、电磁搅拌技术、高频微锻造技术和等离子喷涂技术等辅助技术,协同高通量材料计算模拟,开发用于镁合金激光熔覆的新型高性能合金,为镁合金表面激光熔覆的涂层设计提供参考。