高压电缆半导电屏蔽料研究进展及关键技术分析

摘要:作为高压电缆重要组成部分,半导电屏蔽层对高压电缆的运行稳定性和使用寿命具有至关重要作用。然而,我国高压电缆半导电屏蔽严重依赖进口,极大程度限制了我国高压电缆自主化生产。基于此,本文介绍了高压电缆半导电屏蔽料国内外发展现状,分析了高压电缆半导电屏蔽料材料组分( 基体树脂、导电炭黑和加工助剂) 的作用及关键评价指标,重点讨论了高压电缆半导电屏蔽料生产制造存在的技术瓶颈: 导电炭黑分散性、电阻率及其稳定性和表面光洁度。最后,对高压电缆半导电屏蔽料的发展方向进行了展望。本文全面系统地综述了高压电缆半导电屏蔽料的研究进展,有望为高压电缆半导电屏蔽料国产化设计与开发提供理论指导。

面向6G的低时延高可靠边缘计算架构

摘要:移动边缘计算(MEC)是6G移动通信网络中连通通信与服务、实现万物智联的支撑技术。针对MEC系统的计算时延优化,提出横向多主机架构;为优化MEC系统的传输时延及解决多主机并行计算的掉队者问题,提出多连接主从多主机架构。以上均设计了完整的信令流。针对MEC系统的性能评估,搭建了基于开源库的多主机MEC仿真平台。实验表明,提出的横向多主机MEC架构可有效提高计算时延性能;提出的多连接主从多主机MEC架构有效缓解掉队者问题,提高传输时延性能;搭建的MEC仿真平台能够有效评估多主机架构的关键性能指标。

晶上系统:设计、集成及应用

摘要:晶上系统(SoW)是近年来兴起的一种晶圆级超大规模集成技术。SoW是在整个晶圆上集成多个同构同质或异构异质的芯粒,并且芯粒相互连接组成具有协同工作能力的晶圆级系统,是后摩尔时代进一步提升系统性能的有效技术方案。总结了SoW技术近年来的主要研究进展,对系统架构、网络拓扑、仿真建模、供电和散热等关键技术进行了介绍,并对SoW技术的发展和应用前景进行了展望。

显示面板制造装备国产化的思考与行动

摘要:显示面板产业从阴极射线管(CRT) 发展到有机发光二极管(OLED),日本、韩国等国家的主要技术引领区域基本采用“装备—材料—产品”的全链条垂直整合模式,实现区域内的产业链自足,同时每一次技术跃迁都重构了全球产业版图。中国显示产业的发展从零起步,通过成套引进、消化吸收、自主创新的模式,逐步实现了出货量居全球第1 位,但同时还存在“大而不强”的痛点:显示面板产线核心装备严重依赖进口。显示产业的市场需求仍在不断增长,虽然液晶显示器(LCD) 已趋于饱和,但是OLED正成为市场主力军,预计到2027 年OLED出货量将达到12.2 亿片,其装备的投资占比已超过80%并在逐年提升;微米发光二极管(Micro LED) 将步入市场前端,预计到2030 年全球Micro LED显示面板市场规模将突破千亿美元,出货量也将达到数亿片级别,其装备投资占比也将高达80%以上。针对显示产业未来的市场需求,以及当前显示面板制造核心装备国产化的诸多不足(如高世代产线投资规模大、产业链协同不足、市场需求变化、技术与市场双重挑战等),布局显示面板制造核心装备国产化关系到我国显示产业的供应链安全,保证技术主权及利润分配的掌控,同时能推动我国显示产业升级,推动科技新的增长点。显示产业的发展为装备产业积累了一定的技术基础,培养了一批人才,特别是国家相关集成电路制造专项行动为显示制造装备国产化提供了宝贵经验,加上广东省在显示产业基础、技术可行性和平台基础等方面的优势,位于广东省佛山市的季华实验室已展开行动,牵头实施了显示制造核心装备国产化的专项“璀璨行动”,布局了17 台套核心装备项目,规划用5—10 年时间完成国产化研制测试验证及产业化应用,逐步实现装备国产化的替代。

柔性可穿戴电子应变传感器的研究进展

摘要:柔性可穿戴电子应变传感器因可承受力学形变、质轻及实时监测等优点,是柔性电子领域的研究热点之一,本文从材料选择、器件结构、传感原理、疲劳失效及数值模拟等方面进行了综述。应变传感器的力电转化效率与寿命从本质上取决于导电网络演变和功能层/基底界面,需综合衡量材料的导电性和浸润性等属性,提高其传感性能。功能层结构分为螺旋、褶皱、编织、多孔及仿生五类。传感原理包括压阻、电容及压电式,其中压阻式分为断开机制、裂纹扩展及量子隧道效应。疲劳特性研究表明,交变应力会导致功能层屈曲、开裂及脱落。利用官能团改性、构建三维自交联阵列、引入拓扑结构及形成有序纳米晶畴可改善器件服役行为。疲劳失效模型归纳为拉、弯及扭转形式,在此基础上讨论了模型建立原则、力学本构关系及寿命预测精度。结合数值模拟和应变传递理论构建等效导电路径模型可揭示传感过程中的形态变化、应变分布及界面作用,实现对外界刺激的精准测量。下一步应从基底热力学稳定性、极端条件下服役行为、力电转换机制及穿戴舒适性等方面深入探究,为构建综合性能良好的传感器奠定基础。

可穿戴纤维基能源转换器件研究进展

摘要:随着智能可穿戴设备的普及,其能源供应问题愈加突出,一种绿色且高效的供能系统有待被研发。纤维基能源转换器件凭借着其优异的可集成性和宏观可调性,在柔性穿戴领域受到了越来越多的关注,有望成为解决新一代能源供给问题的有效方案。为进一步深化对纤维基能源转换方案的认识,本文主要回顾了压电、热电和磁电纤维基能源转换器件的最新研究与应用进展,重点讨论了压电纤维、热电纤维和磁电纤维的制备方法、性能分析和可穿戴应用,最后提出了纤维基能源转换器件在应用中所面临的问题与挑战,并对其未来的发展趋势进行了展望。

基于碳材料的多维度柔性应变/压力传感器的研究进展

摘要:近年来,基于碳材料的柔性应变/压力传感器发展迅速,在临床疾病诊断、健康监测、电子皮肤和软机器人等智能可穿戴领域内具有广阔的应用前景。本文综述了基于碳纳米材料和生物衍生碳材料的柔性应变/压力传感器的制备方法和性能特征。根据碳材料的维度和结构特点,可将传感器划分为三大类型:一维纤维/纱线型、二维薄膜/织物型和三维多孔/网络型。本文还重点评述了不同维度碳基柔性传感器的研究进展和存在的问题。未来柔性传感器的发展重点将聚焦于新型结构设计、综合性能提升和多模式功能化应用。

热管理用氮化硅陶瓷热导率影响因素及改善途径

摘要:随着电子功率器件向高电压、大电流、高功率密度发展,其在运行过程中会产生更多的热量,承受更大的热应力,这就对器件用陶瓷基板的散热性能及可靠性提出了更高的要求。传统陶瓷基板如氧化铝(热导率低)、氮化铝(力学性能差)已难以满足大功率器件要求。氮化硅陶瓷由于兼具较高的理论热导率与优异的力学性能而成为大功率器件用陶瓷基板的首选材料。但是氮化硅陶瓷的实际热导率与理论值尚存在较大差距,晶格氧含量是主要影响因素。另外,氮化硅陶瓷在制备过程中需要引入适宜的烧结助剂,由烧结助剂引入而引起氮化硅陶瓷显微结构(致密度、晶粒形貌、晶界相含量与分布及平均晶界薄膜厚度等)的变化也会影响其热导率。氮化硅陶瓷显微结构的演变又与其成型技术、烧结工艺密切相关。降低晶格氧含量,减少晶界相,获得具有由细小晶粒与大长柱状晶粒组成的双峰结构是获得高导热氮化硅陶瓷的关键。本文从氮化硅结构与热学性质入手,对晶格氧与显微结构对氮化硅陶瓷热导率的影响作用机制进行了讨论,从原料粉体、烧结助剂、烧结工艺、结构织构化4个方面对氮化硅陶瓷中晶格氧的调控作用、显微结构的演变过程及热导率的强化机理进行了阐述,对高导热氮化硅陶瓷发展现状及面临的挑战进行了探讨,最后对高导热氮化硅陶瓷未来发展前景进行了展望。

高温服役电子元器件的焊接工艺研究

摘要:在航空航天、钢铁冶金及地质勘探等领域,部分设备需要在高温环境下使用,目前常见装联结构的可耐受温度一般低于200℃,甚至低于150℃,严重制约了相关高温服役设备的电子化进程。为了探索元器件高温焊接的可行性,对高温焊接工艺开展深入分析。研究结果表明,铅基高温焊料(SnAg2.5Pb96.5)的固液相线温度均高于250℃,SnAg2.5Pb96.5焊点的拉伸力平均值为139N,剪切力平均值为237N。与常用的无铅焊料(SAC305)相比,SnAg2.5Pb96.5的固液相线温度较高,但其焊点的拉伸力及剪切力均有所降低。相较于直接焊接工艺,采用预热焊接工艺得到的焊点润湿性好,陶瓷电容本体无裂纹,因此预热焊接工艺更适用于高温服役元器件。

阿秒光源产生和发展趋势

摘要:极紫外阿秒光源具有极短的脉冲宽度和高光子能量,因此具有超高的时间和空间分辨能力,广泛应用于原子分子物理、凝聚态物理,乃至化学和生物学研究中。目前阿秒光源的脉冲宽度已经突破了50 as,最高光子能量也突破了水窗波段。介绍了阿秒光源的产生及产生过程中相位匹配的原理,论述了孤立阿秒脉冲产生和选通方法;回顾了阿秒光源的发展历程,梳理了阿秒光源在基础物理研究中的应用;展望了未来的阿秒光源将朝向具有更高光子能量、更短脉宽、更高单脉冲能量、更高光子通量和更高重复频率的方向发展;上述参数的不断提高在应用研究中具有重要意义。总结了目前国内外的阿秒光源装置,并指出建设大型阿秒装置,实现高性能的阿秒综合实验是未来重要的发展方向。