高品质碳化硅单晶制备技术

摘要:阐述了高品质碳化硅单晶制备技术的研究进展。介绍了SiC材料的优异特性及其在众多领域的重要应用价值,凸显高品质SiC单晶制备的必要性。探讨了目前主流的SiC单晶制备方法物理气相传输法(PVT),分析了其生长原理与工艺过程。重点介绍了影响SiC单晶品质关键技术要点,如石墨材料纯度、籽晶面选择、偏轴籽晶的使用、籽晶粘接工艺、长晶界面的稳定,并对碳化硅长晶关键技术行了详细的研究,包括温场分布、碳化硅粉料掺杂技术、气相组分比调节和低应力控制技术。最后对高品质SiC单晶制备技术的未来发展趋势进行了展望,为相关领域的科研人员和技术人员提供了的技术参考。

湿法纺制PEDOT:PSS基纤维及其在柔性电子器件中的应用进展

摘要:近年来,导电聚合物材料在柔性可穿戴电子领域的应用越来越瞩目。与薄膜材料相比,纤维材料在柔性、可织造等方面有着先天的优势,湿法纺丝技术是连续制备导电纤维的主要手段,聚(3, 4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)基纤维具有柔性、高导电性、比表面积大、可纺性等优势。然而,PEDOT主链的刚性使纤维的拉伸性和导电性无法同时满足,使其在柔性可穿戴电子领域的应用受到限制。因此,经湿法纺丝制备高性能导电纤维的研究成为时下的热点和难点。通过对湿法纺丝过程中的关键步骤进行优化,可以有效提高纤维的综合性能,从而为导电纤维在未来柔性电子领域的应用提供新的可能性。本文总结了当前湿法纺丝PEDOT:PSS 基纤维的制备策略,包括纺丝液设计、凝固浴调控及后处理优化3个关键步骤,分析了PEDOT:PSS基纤维在柔性电子器件领域中的应用和存在的问题,展望了PEDOT:PSS 基纤维在新一代纤维基柔性电子器件中的性能表现和发展方向。

摩擦纳米发电机输出性能提升策略的研究进展

摘要:摩擦纳米发电机(TENG) 是一类能将机械能转换为电能的电子设备,具有材料种类丰富、器件结构简单以及易于集成等特点,在蓝色能源收集、微/纳能源、自驱动传感等方面展示出广泛的应用前景。然而,如何提高TENG 的输出性能一直是科学界关注的焦点。基于此,本文在查阅大量文献的基础上,从TENG 的工作原理出发,分析了摩擦电材料、摩擦层结构和器件结构对TENG 输出性能的影响,并总结了提升TENG输出性能的有效策略,最后对TENG 今后的发展趋势进行了展望。

凝胶聚合物电解质在超级电容器中的研究现状与发展趋势

摘要:新型固态超级电容器具有更高的机械稳定性、易操作性和耐温耐候性,既无传统固态电解质易泄露、不便于携带的缺点,也无液态聚合物电解质易腐蚀、易爆炸的风险,是极具市场前景的高功率储能型超级电容器。固态超级电容器需要电解质离子流动性好、导电率高、活性好和机械稳定性高。凝胶聚合物电解质因其具有安全性高、稳定性好和天然无污染性等特点,是目前固态聚合物电解质中适配度最高的一种电解质。根据电解质基底来源不同可以分为天然型和合成型两类聚合物电解质,复合聚合物电解质主要由聚合物基体、添加剂和电解质盐组成。复合聚合物电解质在超级电容器中既充当了导电介质,也起着隔膜的作用。本文综述了不同聚合物电解质的特点,阐述了聚合物电解质对超级电容器储能及电化学性能的影响与作用机制,最后提出了构建高效储能系统所面临的挑战和未来发展的聚焦点。

宽线性柔性压阻式压力传感器的研究进展

摘要:柔性压阻式压力传感器因其优异的性能、良好的柔韧性及在健康监测和电子皮肤等多个领域的广泛应用前景而受到广泛关注。然而,现有的柔性压阻式压力传感器在宽压力范围内往往面临灵敏度降低和线性度不足的问题。本文综述了柔性压阻式压力传感器在扩大线性范围方面的最新研究进展,重点探讨了通过分层多孔结构、分层微结构及材料协同作用等方法提升传感器性能的有效策略。基于这些方法的研究成果表明,优化传感器的结构设计和材料选择是提升其整体性能的关键。还对柔性压阻式压力传感器的未来发展趋势进行了展望,提出了多功能化、智能制造技术的应用及生物兼容性材料的开发等未来研究方向,以期为该领域的进一步发展提供理论支持。

基于电场响应材料的稀土发光器件

摘要: 可逆调制稀土材料发光对探索稀土材料性能和应用具有重要意义, 将电场响应材料与稀土发光材料结合制备电场响应稀土发光器件,可实现稀土发光的可逆调制以及发光器件的微型化和集成化, 在智能窗口、 防眩光镜、 信息显示器、 防伪等多学科领域有很大的应用潜力。本文综述了近年来基于电场响应材料的稀土发光器件研究的最新进展。分别介绍了一些典型的有机电致变色分子、 有机电致变形分子、 无机金属氧化物、 无机发光半导体与铁电体的电场响应材料的响应机制, 及基于这些电场响应材料的稀土发光器件的研究现状。

聚合物半导体的可控光图案化

摘要:聚合物半导体因其具有轻薄柔软和可溶液加工等特性, 在柔性显示和可穿戴器件等领域具有重要的应用前景, 但高精度图案化加工技术仍是制约其发展的关键瓶颈之一. 本文总结了近年来聚合物半导体光图案化的三种策略. (1) 光裂解法: 通过在聚合物侧链引入光照可除去基团, 利用光照诱导溶解性变化, 进而实现图案化;(2) 光交联法: 通过光致化学交联反应形成不溶网络, 结合掩模获得高分辨率图案; (3) 物理共混光聚合体系法: 借助光引发聚合反应, 使半导体材料与光固化组分形成互穿网络结构从而实现图案化. 本文深入分析了不同图案化方法的化学机制、图案化特性及其对半导体电学性能的影响, 探讨了这些图案化方法在推动聚合物半导体于有机电子器件中的应用及其未来发展方向.

基于有机半导体的感-存-算自旋器件研究

摘要:利用电子自旋属性进行信息存储、传输与处理, 是未来构建智能感知系统的全新途径. 在自旋电子学领域, 有机半导体材料凭借其极弱的自旋弛豫效应和超长的自旋寿命, 成为实现室温自旋信息应用的理想材料. 有机半导体独特的光电磁特性赋予自旋器件对外界刺激的高度敏感响应能力, 开发了系列功能性有机自旋器件, 为构建智能化的自旋感知系统提供了重要的研究基础. 本文综述了有机半导体材料在自旋输运、自旋界面以及光电磁特性方面的研究进展; 重点探讨了基于此类材料的自旋传感器件、存储器件及有望实现自旋运算的光控自旋态器件的最新成果, 并分析了当前研究中面临的挑战, 展望了面向智能信息系统的功能性有机自旋器件的未来发展方向.

植物智能电子器件: 从生长监测到功能调控

摘要:植物作为人类赖以生存的主要食物来源、生态环境的调解者以及多种原材料的提供者, 其生长过程的实时监测与生理功能的精准调控, 正成为推动植物科学研究与智慧植物系统管理的重要方向. 近年来, 随着材料科学与器件技术的不断革新, 尤其是在可穿戴与可植入信号监测、电控调节等领域的突破, 围绕“智能植物电子学”的新兴研究逐渐兴起, 正逐步取代传统的植物信号采集方法, 拓展植物研究的边界. 本综述旨在系统阐述智能植物生物电子器件的核心概念, 梳理其所涉及材料与器件的设计理念、发展历程、代表性进展及关键技术策略.首先, 我们介绍植物电子器件的基本原理及其主要功能类别. 随后, 从环境信号感知、生理状态监测到生长行为调控等多个维度, 系统总结了植物生物电子材料与器件的最新研究成果, 并归纳出三类主要研究策略. 最后, 结合有机电子与碳基材料的发展趋势, 探讨了该领域面临的机遇与挑战, 旨在为未来智慧植物学的构建与发展提供新思路与理论支持.

Ar原子与石墨片层相互作用的分子动力学研究

摘要:在EUV(extreme ultraviolet)光刻机中,多层膜反射镜在暴露于高能EUV 辐射下会产生碳(C)沉积等污染,严重降低反射镜的反射率以至于降低光刻机的使用寿命。而EUV光对背景气体电离产生的EUV诱导等离子体对沉积碳有着较好的清洁作用。采用分子动力学方法对EUV诱导氩(Ar)等离子体与石墨状沉积碳的相互作用过程进行模拟,从Ar在石墨表面的吸附到大量Ar原子对石墨表面累计辐照进行研究。结果表明,Ar在石墨表面Hollow位点具有最稳定的吸附结构,当Ar在石墨表面扩散时倾向穿过C—C键中间的Bridge点向相邻Hollow点扩散。单个独立载能Ar在入射到石墨表面时会产生反射、吸附和扩散3 种现象,这主要与Ar原子入射到石墨的位点有关。而当大量Ar累计辐照石墨时,根据入射Ar 数量和能量的增多会产生多种缺陷并不断发展,使石墨层的强度大大减弱并产生物理溅射效果。