面向超高频植入式RFID芯片的温度传感器研制

摘要:基于0.18μm工艺设计并实现了一款用于超高频植入式RFID芯片的温度传感器。该温度传感器将MOS管作为感温元件,采用基于亚阈值MOS管的低功耗感温核心。传感器利用PTAT和CTAT两种电压延时器构成脉宽产生电路,从而生成脉宽信号,并与时间数字转换器(TDC)一起构成温度量化电路。核心电路的版图面积为298μm×261μm,测温范围为35~45℃。流片测试结果表明,三颗芯片在两点校准后的测温最大误差为±0.4℃,关键温区的最大误差为±0.2℃,实测功耗为623nW。基于流片实测结果,发现了当前芯片的局限性,并提出了未来芯片结构的改进方向。

基于专利数据的中国AI 芯片创新态势研究

摘要:以大模型为核心的新一代人工智能生成内容(AIGC)技术(以下简称生成式人工智能技术)正代表着AI 技术新的发展方向,而当前对于大模型的发展共识(即堆积算力和高质量数据可以继续创造“奇迹”)同时也促使人工智能科技创新转入“万卡”时代。由AI 芯片所构筑的算力“护城河”成为支撑AI 迈向通用人工智能(AGI)的必备需求。为研判我国AI 芯片技术创新的发展态势,本文对我国专利数据进行了检索和分析,梳理和描绘了AI 芯片技术的创新现状与趋势,并探索构建了代表性创新主体的创新潜力专利评估因子,以期形成对未来发展势能的理解与判断。最后,基于专利数据解读和分析,形成了助推我国AI 芯片创新发展的有关建议。

全球专用集成电路发展现状及趋势

摘要:2023年专用集成电路(ASIC)的市场规模和比重均达历史新高,持续增长的动力强劲。本文面向专用集成电路需求,从销售额、比重、细分应用领域发展分化等方面分析了ASIC的市场规模与分布,从终端需求、能源约束、供应链和价格等方面总结了ASIC兴起的主要驱动力。同时,提出ASIC发展的几个趋势:新一轮半导体上行周期将推动ASIC比重首次过半,领域专用架构、开源处理器指令集架构、芯粒成为半导体产业成长的主要技术驱动力,半导体产品“通久必专”推动产业模式“分久必合”。

离子束表面加工设备及工艺研究

摘要:本文介绍了一种用于红外芯片金属化与刻蚀工艺的离子束表面加工设备。通过实验探索不同工艺角度下薄膜沉积速率与均匀性及刻蚀速率与均匀性的影响,结果表明薄膜沉积均匀性与刻蚀均匀性均优于3%。同时经过产线流片,红外芯片表面薄膜均匀性良好、一致性高,芯片电路图案刻蚀陡直性高、损伤低,满足红外芯片金属化与刻蚀工艺需求。

HBM 制造技术演进与今后的发展趋势

摘要:随着智能数据应用的飞速发展,内存带宽限制导致的算力瓶颈日益明显。面对市场对高性能计算和数据处理能力不断攀升的需求,解决这一瓶颈问题正变得越来越具有挑战性。在这一背景下,高带宽内存(High Bandwidth Memory,HBM)被视为突破算力瓶颈的关键方案之一,并且已经成为当前先进封装技术领域的研发热点。本文将回顾HBM 制造工艺的发展历程,分析其技术优势,并对其未来的发展方向进行展望。

纳米金属氧簇EUV光刻胶及其性能影响因素

摘要:随着半导体行业的发展, 先进电子技术亟需更高电子元件密度的集成电路(integrated circuit,亦称积体电路). 在集成电路光刻技术(photolithography, 亦称微影技术)中, 图案化特征结构的尺寸主要取决于曝光光源的波长. 为将图形化尺寸推到更小的极限, 曝光光源的波长从紫外发展到极紫外. 近年来, 波长为13.5 nm的极紫外光(extreme ultraviolet, EUV)成为新一代光刻技术的光源, 是实现10 nm及以下制程的关键因素. 除光源和光刻机外,光刻胶(photoresist, 亦称光阻)也是决定图案化特征尺寸的重要因素, 其关键性能指标包括分辨率、灵敏度、线边缘粗糙度和线宽粗糙度等. 目前适配于EUV光源的光刻胶主要有聚合物、分子玻璃和金属基材料等几类, 其中,纳米金属氧簇EUV光刻胶具备高灵敏度、高分辨率和低粗糙度等性能, 成为半导体集成电路行业的研究热点.本文主要介绍近年来纳米金属氧簇EUV光刻胶体系的组成、结构特征及其性能影响因素, 采用多种表征手段,从分辨率、灵敏度和粗糙度等角度阐述光刻胶成分结构及环境因素对光刻过程及图案形成的影响, 多层次了解其光刻机理及性能平衡策略.

力致发光变色配合物材料的研究进展

摘要:力致发光变色材料作为一种智能光响应材料, 能够响应外力刺激作用, 表现出光物理信号的可逆转变.此类材料具备操作简便、响应灵敏、易于观测、可重复利用等优点, 被广泛应用于光学开关、安全密保、数据记录、安全防伪等诸多领域. 配合物材料将金属离子引入到有机分子堆积组装过程中, 可有效提升光热稳定性,配位驱动丰富分子间堆积模式, 为新型力致发光变色材料的设计提供突破口. 本综述对近五年力致发光变色配合物材料的研究进展进行了总结, 综合分析了此类材料的构筑策略、性能研究方法及潜在应用价值, 并从机理研究和实际应用两个方面提出亟待解决的问题, 以期早日实现工业化批量生产及实际应用.

基于光热转换的光驱动柔性致动器

摘要:柔性致动器作为一种新型能量转化器件,能够将外部环境的光、热、电、湿度等能量转化为机械能。它具有轻量化、小型化和智能化等特点,在人造肌肉、微型机械臂和柔性机器人等领域中逐渐得到广泛应用。其中,光驱动柔性致动器由于具有非接触式操作、快速响应、可编程和多功能性等优势,受到了众多研究学者的关注。本文旨在系统总结光热转换材料在柔性致动器中的最新研究进展。首先介绍柔性基底的选择,其次讨论不同类型光热转换机制的光热转换材料,探讨这些材料的基本特性及其在柔性致动器中的具体应用,如柔性机器人、柔性抓取器和振荡器等。最后分析当前柔性致动器设计所面临的挑战并对未来研究可能存在的问题及其潜在解决方案给予讨论,以期为光热转换材料在柔性致动器中的应用提供参考。

可拉伸高分子光电器件的研究进展

摘要:可拉伸高分子光电器件是一类基于共轭高分子的独特器件,具备在承受机械应变时仍能维持其光电性能的能力,在可穿戴电子、可拉伸显示、生物医学传感等领域展现出广阔的应用潜力. 近年来,国内外学者对器件与材料设计进行了大量的探索,为其性能提升和应用拓展奠定了坚实基础. 本文以外在弹性与本征弹性2 个维度为切入点,深入探讨器件形态设计、材料结构调控以及薄膜组分优化等策略,总结并评述其重要成果. 最后,指出未来需要关注的重点研究方向,以克服商业化过程中面临的多重挑战,并展望可拉伸高分子器件的不断进步能为有机电子领域注入新的活力.