高压共轨柴油机国产芯片控制系统研究

摘要:针对现有高压共轨柴油机电控单元高度依赖进口芯片、自主不足的问题,提出了基于全国产芯片的高压共轨柴油机电控单元方案。所设计的国产控制单元选用兆易创新的GD32F450芯片为控制核心,承担发动机数据采样、处理、存储与控制任务。首先,采用Boost升压电路提供喷油器峰值电流,利用分立器件设计双边驱动与电流反馈电路,在不依赖进口专用芯片的条件下,对喷油器驱动电流进行闭环控制;然后,基于FreeRTOS操作系统,开发高压共轨柴油机底层驱动软件,实现对不同任务调度周期的精准控制;最后,对所设计的电控单元进行了实验验证。结果表明,所设计的国产高压共轨柴油机电控单元功能齐全、工作稳定,双边驱动电路典型峰值电流为22A,维持电流为10A,最小喷射间隔时间为200μs,多次喷射性能与Bosch系统相当。发动机不同转速条件下任务调度周期精准、实时性好,研究证实了高压共轨柴油机电控单元全国产化方案的可行性,对推动发动机电控技术自主可控提供了有益参考。

高品级氮化铝粉体及其碳热还原氮化工艺研究进展

摘要:氮化铝(AlN)具有高导热、绝缘、低膨胀、无磁等优异性能,是半导体、电真空等领域高端装备的关键材料,特别是在航空航天、轨道交通、新能源装备、高功率LED、5G 通讯、电力传输、工业控制等领域功率器件中具有不可取代的作用。高品级粉体是制备高性能陶瓷的基础,氮化铝粉体的性质直接影响了后续成形、烧结等工艺以及材料的组织和性能。碳热还原氮化法制备氮化铝粉体具有纯度高、粒度细和烧结性好等特点,本文综述了氮化铝粉末的评价指标以及碳热还原氮化法制备氮化铝粉末的研究进展,提出未来研究与产业化的方向与趋势。

基于二维材料的压电光电子学器件

摘要:二维(2D)材料由于原子级超薄、可调带隙和优异的光电性质, 在柔性光电子学领域有着巨大的潜力. 利用应变诱导的压电势或压电极化电荷可以调控二维材料界面载流子的传输和光电过程, 这种将压电、半导体特性、光激发三者耦合产生的压电光电子学效应推动了新型二维材料光电器件的开发, 特别是压电光电子学增强的光电探测、光电化学、气体传感和太阳能电池等方向. 本文简要综述了近年来二维材料在压电光电子学领域取得的研究进展, 并对这一新兴领域未来的挑战和科学突破进行了展望.

芯片制造中的化学镀技术研究进展

摘要:芯片制造中大量使用物理气相沉积、化学气相沉积、电镀、热压键合等技术来实现芯片导电互连. 与这些技术相比, 化学镀因具有均镀保形能力强、工艺条件温和、设备成本低、操作简单等优点, 被人们期望应用于芯片制造中, 从而在近年来得到大量的研究. 本综述首先简介了芯片制造中导电互连包括芯片内互连、芯片3D 封装硅通孔(TSV)、重布线层、凸点、键合、封装载板孔金属化等制程中传统制造技术与化学镀技术的对比, 说明了化学镀用于芯片制造中的优势; 然后总结了芯片化学镀的原理与种类、接枝与活化前处理方法和关键材料; 并详细介绍了芯片内互连和TSV互连化学镀阻挡层、种子层、互连孔填充、化学镀凸点、再布线层、封装载板孔互连种子层以及凸点间键合的研究进展; 且讨论了化学镀液组成及作用, 超级化学镀填孔添加剂及机理等. 最后对化学镀技术未来应用于新一代芯片制造中进行了展望.

可见光驱动的Ti基半导体光催化剂的研究进展

摘要:半导体光催化技术在太阳能转换以及环境治理方面具有巨大潜力。TiO2由于其高的光催化效率、良好的稳定性以及合适的带边电位等,成为了当前研究最多的光催化材料。但TiO2 是宽带隙半导体,对可见光几乎不响应,这极大限制了TiO2的应用。为了提高TiO2对可见光的响应能力,提高太阳能的转化效率,相继开发了一系列由TiO2衍生的Ti基可见光催化剂。首先简单地介绍了半导体光催化机制,然后综述了Ti 基半导体光催化剂的分类、增强可见光响应策略以及Ti基可见光催化剂应用现状,最后总结了Ti基可见光催化剂制备及应用过程中所面临的挑战,同时也对未来Ti 基可见光催化剂的合成及发展进行了展望。

单晶金刚石衬底超精密加工损伤层无损测量与表征

摘要:针对超精密加工后单晶金刚石衬底表面损伤层具有超薄(试验仅几个纳米)且透明的特点,提出一种基于光谱椭偏的测量和表征方法,实现衬底损伤层厚度和折射率的无损测量和表征。首先,建立“粗糙层+纯基底”两层光学模型,利用离散型穆勒矩阵椭偏测量模式测量加工前籽晶衬底,分析测量数据获得其光学常数,作为后续加工损伤层椭偏数值反演的基础,以避免损伤层与衬底间椭偏参数耦合;然后,根据衬底加工后的特征,建立“粗糙层+损伤层+纯基底”三层光学模型,采用多点拟合分析策略,在此基础上,实现粗磨和精磨两个典型加工阶段金刚石衬底损伤层的无损表征,并进一步探究单面磨削和双面磨削损伤层差异。结果表明,籽晶折射率与金刚石折射率理论值接近,且随波长的变化趋势一致,说明测量模式和拟合策略可行;粗磨后衬底损伤层的厚度和折射率均高于精磨后衬底损伤层的厚度和折射率;双面磨削与单面磨削损伤层的折射率在红外波段基本一致,在紫外-可见波段具有差异。损伤层厚度椭偏测量结果与透射电子显微镜(Transmission electron microscope,TEM)测量结果进行比对分析,验证椭偏测量方法的准确性。所提方法可无损测量单晶金刚石衬底超薄损伤层厚度和折射率,表征超精密加工后衬底表面质量,有助于金刚石衬底超精密加工过程的工艺优化。

用于深部组织微创及无创连续监测的柔性电子器件

摘要:深部组织信号与疾病间有着强烈的相关性, 临床上对深部组织的检测诊断一般依赖于医学影像设备等大型仪器, 成本高昂且不利于长期监测。不同于笨重的大型设备, 微创及无创的柔性电子器件可以在体长期佩戴,实现深部组织信号的连续采集, 有助于疾病的早期诊断, 进行精准化、个性化治疗。在本综述中, 我们讨论了深部组织的生理、生化信号的检测机制, 重点分析器件的制备方法、关键性能指标以及数据无线传输技术。最后提出了该领域存在的挑战和可能的解决策略。

用于柔性电子器件的有机/无机薄膜封装技术研究进展

摘要:有机/无机薄膜封装技术被广泛用于有机发光二极管(OLED)、量子点显示及有机光伏等领域,是一种新型的柔性封装技术。综述近年来有机/无机薄膜封装技术的发展趋势,首先概述了传统硬质盖板封装方式与薄膜封装方式的发展及其优缺点。其次,系统地总结了有机/无机薄膜的制备方法,如原子层沉积、等离子体化学气相沉积等,详细阐述了不同制备方法的原理及其应用。再次,讨论了薄膜的微观缺陷、内应力,以及材料界面工程对有机/无机薄膜封装性能的影响,分析总结了有机/无机封装薄膜制备的技术要点,如采用基底表面预处理、引入中性层、调节层间应力等方式获得优质的封装薄膜。最后,探究了有机/无机封装薄膜的内在阻隔机理,提出气体在有机/无机薄膜中的传输方式以努森扩散为主,并总结了提高薄膜封装的策略,即延长气体扩散路径、“主动”引入阻隔基团及薄膜表面改性。提出了未来薄膜封装技术面临的问题,拟为柔性电子器件封装技术的发展提供一定参考。

碳基CMOS集成电路技术: 发展现状与未来挑战

摘要:碳纳米管凭借其优良的电学性质、准一维尺寸以及稳定的结构成为后摩尔时代最理想的半导体材料。目前碳基电子学已经取得很大进展, 例如可以在4寸晶圆上得到高半导体纯度(超过99.9999%)的密排(100~200CNTs/μm)阵列碳纳米管, 晶体管栅长可以缩至5 nm且具备超越硅基的性能, 世界首个碳基现代微处理器RV16XNANO已经问世。本文综述了近年来碳纳米管在材料、器件和集成电路方面的发展, 以及未来可能在光电、传感、显示和射频等领域的应用前景. 最后, 文章列举了碳基CMOS集成电路推向产业化的过程中面临的一系列挑战, 并对碳基技术发展路线做了进一步展望。

柔性可穿戴电子应变传感器的研究进展

摘要:柔性可穿戴电子应变传感器因可承受力学形变、质轻及实时监测等优点,是柔性电子领域的研究热点之一,本文从材料选择、器件结构、传感原理、疲劳失效及数值模拟等方面进行了综述。应变传感器的力电转化效率与寿命从本质上取决于导电网络演变和功能层/基底界面,需综合衡量材料的导电性和浸润性等属性,提高其传感性能。功能层结构分为螺旋、褶皱、编织、多孔及仿生五类。传感原理包括压阻、电容及压电式,其中压阻式分为断开机制、裂纹扩展及量子隧道效应。疲劳特性研究表明,交变应力会导致功能层屈曲、开裂及脱落。利用官能团改性、构建三维自交联阵列、引入拓扑结构及形成有序纳米晶畴可改善器件服役行为。疲劳失效模型归纳为拉、弯及扭转形式,在此基础上讨论了模型建立原则、力学本构关系及寿命预测精度。结合数值模拟和应变传递理论构建等效导电路径模型可揭示传感过程中的形态变化、应变分布及界面作用,实现对外界刺激的精准测量。下一步应从基底热力学稳定性、极端条件下服役行为、力电转换机制及穿戴舒适性等方面深入探究,为构建综合性能良好的传感器奠定基础。