柔性高分子半导体:力学性能和设计策略

摘要:近年来,高分子半导体在有机发光、有机光伏和有机场效应晶体管等领域扮演着愈发重要的角色。某些高分子材料特别是高分子弹性体,具有优异的可拉伸、可弯曲等力学特性,因而高分子半导体在柔性电子领域具有广阔的应用前景。力学性能是评价高分子半导体柔性行为的基本依据,相关研究中对力学特性的表征方法包括拉伸法、正弦屈曲技术、纳米压痕技术和原子力显微镜纳米力学图谱等。而在柔性高分子半导体材料的构建方面,也涌现出许多可供参考的思路,归纳起来主要有超分子功能化、主链柔性化、掺杂等设计策略,其中多重非共价弱作用策略是柔性高分子半导体的普适性设计方法,值得深入探索和研究。本综述旨在总结柔性高分子半导体的力学特性和设计策略,以期为相关研究提供参考和借鉴。

面向“十五五”的半导体装备的挑战与机遇

摘要:面向“十五五”,我国半导体装备产业面临技术封锁与供应链脱钩的双重挑战,需从“追赶替代”转向“路径创新”,突破对国际技术体系的依赖。文章分析了三大核心需求:支撑自立自强(突破先进制程装备与零部件瓶颈)、构建中国特色创新生态(探索GAA、3D集成等新技术路径)、推动智能化升级(融合AI与数字化技术)。同时,提出以“再全球化”策略应对逆全球化,通过内循环与国际双循环协同,重塑全球半导体产业链。当前,国产装备在成熟制程取得突破,但高端领域仍被美国、日本、欧洲垄断,且面临低水平重复竞争、供应链“卡脖子”等问题。建议通过系统性科技攻关、上下游协同创新,避免内卷,聚焦非对称技术优势,实现从自主可控到自立自强的跨越。

芯片用金刚石增强金属基复合材料研究进展

摘要:随着电子设备集成化程度越来越高,对高导热封装材料的需求也越来越大,金刚石增强金属基复合材料凭借其高导热性能成为研究焦点。然而,由于金刚石颗粒与金属基体之间的不润湿特性,具有高导热性的金刚石增强金属基复合材料难以制备。文中综述了金刚石增强金属基复合材料的研究进展,包括界面改性、工艺参数优化和复合材料制备方法,并指出了金刚石增强金属基复合材料目前存在的问题和今后的研究方向。

飞秒激光全划切超薄碳化硅基片

摘要:目的为实现超薄碳化硅基片全划切,需在加工出窄线宽(小于25 μm)的切割槽的同时保证基片的强度。方法使用波长为1 030 nm 的红外飞秒激光对碳化硅基片进行全划切加工,通过扫描电子显微镜和光学显微镜分析脉冲重复频率、脉冲能量、切割速度和扫描次数对切口宽度、深度以及断面形貌的影响,采用能谱仪对不同脉冲能量下的划切断面进行微区元素分析,采用激光共聚焦显微镜测量划切断面粗糙度,以及采用电子万能实验机测试划切样品的抗弯强度。结果划切断面的元素主要有Si、C、O 3 种,O 元素富集在断面的上下边缘位置。SiO2 颗粒喷溅重沉积影响断面微纳结构。断面的粗糙度随脉冲能量的增强而上升,基片强度反而下降。在激光脉冲能量为3.08 μJ、脉冲重复频率为610 kHz、切割速度为4 mm/s、切割12 次的条件下,可以加工出宽度为15 μm、深度高于100 μm 的良好切割槽,断面粗糙度为296 nm,基片抗弯强度为364 MPa。结论切割槽宽度和深度与脉冲重复频率、脉冲能量、切割速度和扫描次数有关。O 元素的分布说明存在SiO2 堆积在断面上下边缘部分的现象。使用小脉冲能量激光进行划切,可以减少SiO2 颗粒喷溅重沉积,从而使断面出现大量熔块状结构,得到粗糙度较低的断面形貌。断面粗糙度降低,意味着划切断面存在的微裂纹等缺陷减少,从而使强度上升。本试验最终采用较优激光划切工艺参数,实现了飞秒激光全划切超薄SiC 基片,槽宽仅为15 μm。由于短脉宽小脉冲能量高重复频率激光的作用以及激光辐射下SiC 材料的相分离机制,基片划切断面烧蚀形貌良好,且抗弯强度较好。

煤基富氧多孔炭纳米片的制备及其超级电容器性能

摘要:多孔炭电极的表面改性与优化是实现超级电容器优异性能的关键。本文以煤化学工业的固体副产物为碳源,利用二维层状双氢氧化物(MgAl-LDH)的刚性约束作用耦合KOH 活化工艺成功制备了二维富氧多孔炭纳米材料(OPCN)。系统研究了炭化温度对OPCN 样品微观结构和表面特性的影响,通过SEM、TEM、氮气吸脱附测试以及元素分析等表征手段对炭材料的结构/组成和表面特性进行分析表明,经700 °C 炭化获得的炭材料样品(OPCN-700)具有较高的氧质量分数(24.4%)和大的比表面积(2 388 m2 g−1),并表现出良好的润湿性。同时,OPCN-700 样品丰富的微孔和二维纳米片结构为电解质离子提供了有效的储存和传输途径。作为超级电容器的电极材料,在电流密度为0.5 A g−1 时,其比电容高达382 F g−1,并呈现出优异的倍率性能和循环稳定性。该技术策略为富氧原子掺杂二维多孔炭材料的可控制备与水系储能器件的设计构建提供了新思路。

超薄晶圆减薄工艺研究

摘要:主要研究了超薄晶圆减薄工艺和设备。从设备结构、晶圆传输、晶圆加工工艺、晶圆测量等方面,介绍了先进封装用减薄机如何解决超薄晶圆易碎问题,以及设备的国内外现状。

银纳米线柔性透明天线及其智能可穿戴应用

摘要:第五代移动通信技术的快速发展,使透明天线成为新型无线传输技术的研究热点。透明导电材料的选取对透明天线的设计至关重要。银纳米线材料具有导电性能优异、尺寸可调和稳定性好等特点,因而备受关注。文章综述了银纳米线透明天线及其在智能可穿戴领域的应用;介绍了银纳米线常用的化学合成方法,对各自的特点和所生长的银线的基材适配性进行了讨论;阐述了银纳米线透明天线的关键性能参数,指出在天线设计时应平衡透光性与导电性这对矛盾关系;提出了银纳米线透明印制天线的制作流程,涉及银纳米线材料的油墨化、图案化和后处理等;最后总结了银纳米线透明天线的应用,并进行了展望。

硅基SiC薄膜制备与应用研究进展

摘要:碳化硅(SiC)材料具有极为优良的物理、化学及电学性能,可满足在高温、高腐蚀等极端条件下的应用,碳化硅还是极端工作条件下微机电系统(MEMS)的主要候选材料,成为国际上新材料、微电子和光电子领域研究的热点。同时,碳化硅有与硅同属立方晶系的同质异形体,可与硅工艺技术相结合制备出适应大规模集成电路需要的硅基器件,因此用硅晶片作为衬底制备碳化硅薄膜的工作受到研究人员的特别重视。本文综述了近年来国内外硅基碳化硅薄膜的研究现状,就其制备方法进行了系统的介绍,主要包括各种化学气相沉积(Chemical vapor deposition,CVD)法和物理气相沉积(PPhysical vapor deposition,PVD)法,并归纳了对硅基碳化硅薄膜性能的研究,包括杨氏模量、硬度、薄膜反射率、透射率、发光性能、电阻、压阻、电阻率和电导率等,以及其在微机电系统传感器、生物传感器和太阳能电池等领域的应用,最后对硅基碳化硅薄膜未来的发展进行了展望。

基于硅外延片用石墨基座的温度均匀性研究

摘 要:通过对电磁感应加热的硅外延化学气相沉积反应腔室建立理论分析模型,结合工程实验对比,研究了不同石墨材料和不同基座结构对基座表面温度均匀性的影响。结果显示,在工程中,选择合适的石墨材料、设计合适的基座结构对硅外延片电阻率均匀性有着很大的影响,但在提升产品质量的同时也要平衡经济效益。

碲锌镉晶体的铟碲共掺杂退火研究

摘要:针对生长态碲锌镉晶体缺陷密度大和电学性能无法满足室温核辐射探测器的制备要求等问题,研究了铟碲共掺杂退火对碲锌镉晶体碲夹杂和电学性能的影响。利用分子动力学方法模拟了不同温度下铟原子在碲锌镉晶体中的扩散过程,获得了铟原子的扩散系数表达式,计算了铟原子扩散至碲锌镉晶体所需理论时长,在此基础上开展了铟碲共掺杂退火实验,进一步优化了退火工艺。实验结果表明,铟碲共掺杂退火70 h的碲锌镉晶体碲夹杂密度下降至27.61mm-2,体电阻率接近1011Ω·cm、漏电流低于4 nA(400V),电学性能达到核辐射探测器应用要求。