集成电路用高纯金属溅射靶材发展研究

摘要:高纯金属溅射靶材是集成电路用关键基础材料,对实现集成电路用靶材的全面自主可控,推动集成电路产业高质量发展具有基础性价值。本文分析了集成电路用高纯金属溅射靶材的应用需求,梳理了相应高纯金属溅射靶材的研制现状,涵盖高纯铝及铝合金、高纯铜及铜合金、高纯钛、高纯钽、高纯钴和镍铂、高纯钨及钨合金等细分类别。在凝练我国高端靶材制备关键技术及工程化方面存在问题的基础上,着眼领域2030 年发展目标,提出了集成电路用高纯金属溅射靶材产业的重点发展方向:提升材料制备技术水平,攻克高性能靶材制备关键技术,把握前沿需求开发高端新材料,提升材料分析检测和应用评价能力。研究建议,开展“产学研用”体系建设,解决关键设备国产化问题,加强人才队伍建设力度,掌握自主知识产权体系,拓展国际合作交流,以此提升高纯金属溅射靶材的发展质量和水平。

面向电子皮肤的智能材料构建策略

摘要:电子皮肤作为具有模仿人类皮肤感知功能的新型的柔性可穿戴传感器,具有轻薄、柔软、灵活等特点,可将外界刺激转化为不同的输出信号,近年来在健康监测、人机交互等领域展现出巨大的应用潜力。本文从构建电子皮肤的智能材料角度出发,对电子皮肤常用基体和导电填料及其几何结构构建等方面进行了综述,并基于电子皮肤应用所需面对的复杂环境对其生物相容性、黏附性、自修复性、自供电性等应用性能需求进行讨论,进而指出电子皮肤在研究过程中仍然存在对人体皮肤的综合感知性能差、制备工艺复杂且昂贵、感知刺激信号存在滞后性等问题,通过材料和结构优化提升电子皮肤基础性能,从而构建优异性能、多功能化、多种外界刺激同步检测成为电子皮肤发展趋势,并且在医疗诊断、软体机器人、智能假肢和人机交互等领域表现出极大的潜力。

电子鼻技术及其应用研究进展

摘要:电子鼻(Electronic nose,E-nose)技术作为一种有效的嗅觉模拟与气体识别的方法被广泛应用。电子鼻系统由气体传感器阵列组成,利用其交叉敏感性对气体进行检测。电子鼻系统利用机器学习算法,对气体进行定性定量分析。传统的机器学习算法在电子鼻系统中的应用已经成熟,如今深度学习算法也慢慢在电子鼻系统中应用。电子鼻系统具有选择性高、精密度好、反应快速、稳定性和延展性好的特点,被应用于包括有毒气体检测、空气质量管理、食品新鲜度和质量预测等方面。本文从气体传感器阵列的组成、信号采集与处理单元、模式识别算法的分类以及电子鼻系统在实际中的应用等方面综述了电子鼻系统气体识别的最新研究进展,最后对电子鼻系统气体识别目前所存在的问题以及发展前景进行了总结和展望。

大尺寸金刚石晶圆复制技术研究进展

摘要:半导体技术的发展离不开大尺寸晶圆的高效制备。在半导体领域,晶圆复制可以通过同质外延生长后进行切割或者基于异质衬底进行异质外延来实现,从而批量生产。金刚石作为新型超宽禁带半导体材料,在电真空器件、高频高功率固态电子器件方面具有良好的应用前景。而由于金刚石材料具有极高硬度,晶圆复制也面临诸多问题。传统的激光切割方法虽然可以实现对超硬特性金刚石进行加工,但其较高的加工损耗已经无法满足大尺寸晶圆的制备需求,呕需开发损耗小、效率高的金刚石晶圆复制技术。文章介绍了目前常见的半导体晶圆复制技术,总结了金刚石复制技术的研究进展及现阶段发展水平,并对未来大尺寸金刚石晶圆复制技术的发展方向进行了分析与展望。

聚多巴胺(PDA)制备的电极材料在超级电容器中的应用进展

摘要: 现今,能源短缺的严峻形势将会逐渐影响人们的生产生活,所以开发新的储能元件成为科学家的研究重点。其中,超级电容器作为一种优异的储能器件,备受关注,但受限于其能量密度和功率密度不高而不能满足大规模的实际应用需求。因此,开发新的电极材料,成为解决此问题的方法之一。聚多巴胺(PDA)作为一种新材料,具有很多优点,如,高碳化率、高粘附性、多种官能团(邻苯二酚、胺和亚胺,大π电子结构)等。将PDA 作为电极材料,是最近才出现的热门课题,PDA 利用自身的高含碳量可以作碳电极;此外,自身含有胺基官能团可进行杂原子掺杂;最重要的是可以作为粘结剂,不仅能牢牢吸附外加材料,而且能够修饰复合材料内部结构,参与赝电容反应,增加复合材料比电容。在本文中我们将根据PDA 与不同物质复合在一起的分类方式,分别介绍PDA 在超级电容器中参与一元、二元、三元复合电极材料的应用。

柔性超级电容器电极材料制备方法研究进展

摘要:随着柔性超级电容器在可穿戴、小型化、便携式、柔性消费电子产品中的潜在应用,新材料、新加工技术和新设计得到了推广。电极材料是柔性超级电容器中重要的组成部分,其优异的性能决定了整个器件的应用。通过介绍柔性超级电容器电极材料的制备方法,总结了柔性超级电容器现阶段发展所面临的挑战,期望为制备高性能的柔性超级电容器提供参考。

半导体纳米晶体的冷等离子体合成: 原理、进展和展望

摘要:冷等离子体已发展成为纳米材料合成领域的重要技术途径. 无需化学溶剂和配体, 冷等离子体为高品质半导体纳米晶体的生长提供了独特的非热力学平衡环境: 等离子体中的高能电子与纳米颗粒碰撞使得纳米颗粒带电, 可降低或消除纳米颗粒之间的团聚; 高能表面化学反应能够选择性地将纳米颗粒加热到远超环境气体温度的温度; 气相中生长物和固相纳米颗粒表面结合物之间化学势的巨大差异, 有利于实现纳米晶体的超高浓度掺杂. 本文综述了冷等离子体合成半导体纳米晶体的研究现状, 详细讨论了冷等离子体中纳米颗粒形核、生长和晶化的基本原理, 总结了冷等离子体在单元素、化合物和复杂核壳结构纳米晶体方面的研究进展, 特别强调了冷等离子体在纳米颗粒尺寸、形貌、结晶状态、表面化学和组分等性能调变上的技术优势, 概述了超掺杂纳米晶体呈现的新颖物性, 展望了冷等离子体技术在纳米晶体合成领域的应用前景.

新型WN纤维透明电极的制备及透光导电性能

摘要:纤维透明电极兼具高透光与高导电性,有望取代传统锡掺杂氧化铟(简称ITO)成为新一代透明电极材料。金属纤维虽具有高导电性,但在受热或酸碱腐蚀条件下其性能急剧下降,应用环境受限。针对上述问题,本文采用电纺丝结合氮化热处理工艺制备出新型WN 导电纤维,进一步通过近场直写方法实现纤维的有序排列与WN 纤维透明电极的图案化构筑,以获得高透光高导电且耐热耐腐蚀的新型高性能透明电极。研究结果表明,WN 纤维的导电性随氮化温度的升高而增大,900℃氮化制备的WN 纤维的电导率高达2189 S/cm。通过近场直写可以有效调控WN 纤维透明电极的网格结构,进而调控其透光性与导电性。当网格间距为200μm 时,对应透明电极的透光率高达94%以上,方阻低至6.0Ω/sq,性能优于目前报道的金属纤维透明电极。与金属纤维相比,WN 纤维透明电极还具有优异的耐热与耐腐蚀性,在160℃氧化16h,方阻仅增加8%,在pH 值为1~13 的酸碱溶液中腐蚀1min,方阻增幅≤3%。

基于相变材料Ge2Sb2Te5 的光纤存储器

摘要: 光纤的典型功能是通信和传感,该文赋予光纤存储的功能,设计了一种全光纤存储器,以满足光纤通信系统智能化发展的需要。利用单模光纤(single-mode fiber, SMF)与多模光纤(multimode fiber, MMF)同轴焊接,并通过磁控溅射方法将Ge2Sb2Te5(GST)材料沉积在MMF 端面,端面出射的类贝塞尔光束可以切换GST 的相态。MMF 的长度影响端面光场,最终选择1.5 mm 长的MMF 以实现具有任意级别访问能力、高光学对比度、稳定重复性良好的非易失性存储器。该存储器可以实现11 级存储,并能够在11 个存储等级间进行任意且稳定的切换,光学对比度达到50%,重复循环至少34 次。

中国先进半导体材料及辅助材料发展战略研究

摘要:目前,以SiC、GaN 为代表的第三代半导体材料快速发展,我国亟需抓住战略机遇期,实现先进半导体材料、辅助材料的自主可控,保障相关工业体系安全。本文在分析全球半导体材料及辅助材料研发与产业发展现状的基础上,寻找差距,结合我国现实情况,提出了构建半导体材料及辅助材料体系化发展、上下游协同发展和可持续发展的发展思路,制定了面向2025 年和2035 年的发展目标。为推动我国先进半导体材料及辅助材料产业发展,提出了建设集成电路关键材料及装备自主可控工程,SiC 和GaN 半导体材料、辅助材料、工艺及装备验证平台,先进半导体材料在第五代移动通信技术、能源互联网及新能源汽车领域的应用示范工程,并对如何开展三项工程进行了需求分析,设置了具体的工程目标和工程任务。最后,为推动半导体产业的创新发展,从坚持政策推动,企业和机构主导,整合国内优势资源;把握“超越摩尔”的历史机遇,布局下一代集成电路技术;构建创新链,进行创新生态建设等方面提出了对策建议。