穿戴电子可拉伸材料的制备与应用

摘要:可拉伸材料的出现解决了智能设备的刚性问题,使得智能设备能够实现柔弹性。综述了超薄材料、织物以及生物可降解材料等可拉伸材料的最新研究进展与发展方向,包括超薄材料、织物材料、生物可降解材料等;介绍了可拉伸材料在可拉伸电极、储能设备及晶体管传感器等方面的应用;指出可拉伸材料存在材料导电性和拉伸性的平衡问题、可拉伸电极的不透气性和舒适度较差问题,探讨了其未来发展的机遇与面临的挑战。

LED封装基板研究新进展

摘要:基板散热是LED散热的最主要途径,其散热能力直接影响到LED 器件的性能和可靠性。总结了LED封装基板材料的性能,综述了金属基板、陶瓷基板、硅基板和新型复合材料基板的研究进展,展望了功率型LED封装基板的应用和发展趋势。综合表明,MCPCB, DBC, DAB, DPC 等基板各具优势,但DPC基板各种制备工艺参数合适,特别是铝碳化硅基板(Al/SiC)有着低原料成本、高导热、低密度和良好可塑性的显著优势,有望大面积推广应用。

直立石墨烯柔性导热材料制备技术现状与进展

摘要: 近年来电子元器件朝着高密度、高集成和微型化的方向发展,可以快速转移多余热量的热界面材料随之成为研究热点,石墨烯因其优良的导热性能成为制备热界面材料的理想选择之一。为了将发热源产生的热量迅速传递到散热板上,诱导石墨烯在竖直方向上的排列成为值得关注的研究方向。本文根据材料中石墨烯的来源及导热薄膜成型方式,主要介绍两类直立排列的石墨烯柔性导热材料制备工艺,分别为自下而上法和自上而下法。自上而下法包括介电泳法、机械组装法、定向冷冻法、水热还原法和蒸发诱导自组装法等,自下而上法主要指利用化学气相沉积法直接生长石墨烯。

电器散热片用新型镁合金的挤压温度优化

摘要:采用不同的温度进行了电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压,并进行了显微组织、散热性能和力学性能的测试与分析。结果表明:随挤压温度从300℃提高至420℃,电器散热片用Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸和断后伸长率先减小后增大, 热导率(散热性能) 和抗拉强度则先增大后减小。当挤压温度为380℃时,Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸为8.2μm,断后伸长率为8.1%,分别较300℃挤压时减小了27%和14%;热导率为151 W/(m·K),抗拉强度为282 MPa,分别较300℃挤压时增大了44%和25 MPa,此时散热性能和强度最好。电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压温度优选为380℃。

线锯切片技术及其在碳化硅晶圆加工中的应用

摘要:作为制备半导体晶圆的重要工序,线锯切片对半导体晶圆的质量具有至关重要的影响。本文以发展最成熟的硅材料为例,介绍了线锯切片技术的基本理论,特别介绍了线锯切片技术的力学模型和材料去除机理,并讨论了线锯制造技术及切片工艺对材料的影响。在此基础上,综述了线锯切片技术在碳化硅晶圆加工中的应用和技术进展,并分析了线锯切片技术对碳化硅晶体表面质量和损伤层的影响。最后,本文指出了线锯切片技术在碳化硅晶圆加工领域面临的挑战与未来的发展方向。

金属与光子晶体组合型结构色颜料的制备及性能研究

摘要:[目的]基于干涉效应的法布里−珀罗(F-P)腔及介质层−吸收层−介质层−金属(DADM)结构的不透明结构色颜料由于包含一层很薄且对膜厚波动极其敏感的吸收层,在工业化生产中常常出现色相偏差大、工艺稳定性差、生产效率低等问题,亟需寻求一种更稳定高效且低成本的制备方式。[方法]设计了金属与一维光子晶体组合型(MPC)结构,其中不包含对膜厚波动敏感的薄吸收层,而是利用一个金属膜层来实现吸收和部分反射的作用,以实现在白色等浅色的底色上呈现颜色。采用物理气相沉积(PVD)工艺分别制备了 MPC和 DADM两种类型的结构色颜料 Pink 1和 Pink 2,分析了它们的光谱、物理性质及颜色。[结果]Pink 1、Pink 2 都是微米级片状不透明颜料,颜色随观察角度而异,在深色和浅色的底色上都可以呈现出颜色。与采用 DADM 结构的 Pink 2相比,采用 MPC结构的 Pink 1在饱和度及随观察角度不同而异色的能力稍弱,但其制备工艺和设备的容错率更高、稳定性更好。在保持颜料覆盖率和最高反射率等性能相近的情况下,Pink 1颜料的日均产能比 Pink 2 颜料高10% ~ 15%。通过改变 MPC膜层结构,还可以实现绿、蓝等新颜色,以及赋予结构色颜料磁性等其他功能。[结论]MPC结构有利于高效率、低成本地进行大规模生产,是一种获得中等饱和度及角度依赖性的不透明结构色颜料的可行方式。

照明与显示用绿光发光材料的研究进展

摘要:新型固态照明与显示技术具有亮度高、效率高、节能环保等显著优势,已成为室内外照明、汽车大灯、激光电视等高端照明和显示领域的主流技术。绿光发光材料作为荧光转换型照明与显示的核心材料,其性能直接决定器件的服役行为。然而,在高功率密度激光运转下,绿光发光材料的温度急剧升高,导致其量子效率下降、发光衰减,严重制约了固态照明与显示技术的应用。为此,不同物理形态的绿光发光材料应运而生。本文综述了激光显示用绿光发光材料的最新研究进展,系统地总结了粉末、陶瓷、微晶玻璃、薄膜等绿光发光材料在热稳定性、半高宽、色域、色度参数等性能特征的调控策略。讨论了绿光发光材料面临的发光效率和器件封装等挑战,并展望了照明与显示用绿光发光材料的研究进展。

基于石墨烯和金刚石的可调谐光子器件的研究

摘要:随着5G时代的到来,对光子器件的集成度以及性能指标提出了更高的要 求,而传统器件存在不可调谐、效率低和稳定性差等弊端,限制了其在高集成度、高传输速度光通讯的应用。近年来,金刚石优异的热导率和高折射优势使其成为了研究电磁吸收器件中介质材料的最优材料之一,而石墨烯所具有磁场诱导下的离散朗道能级、可调谐化学势和易于激发太赫兹SPP等,在解决该问题中发挥着至关重要的作用。在此研究背景下,开展了基于石墨烯和金刚石的可调谐光子器件的研究,利用石墨烯化学势可调谐并且易于激发太赫兹 SPP的特性,设计了一种相位型调制双带完美吸收器。研究了金刚石介质厚度、石墨烯化学势和入射角度等参量对电磁吸收器吸收性能的影响规律。该器件实现了对太赫兹信号的 吸 收,具有可调谐、吸收率高和稳定性强等优势。

电力电子中高频软磁材料的研究进展

摘要:随着电力电子行业的飞速发展,新型电磁材料的投入使用,对电子元器件的高频磁性能提出了新的要求。磁芯作为电子元器件的核心部件,其发展程度直接决定电子元器件的性能,这就要求具有优异高频软磁性能的材料发展。本文综述了四种软磁材料的发展历程,对每种软磁材料的优缺点进行了归纳总结,同时指出了未来的发展方向,并重点对近年来研究热门的软磁复合材料进行了梳理。粒径大小可控、包覆层对核层的包覆均匀程度以及从实验室走向产业化的大批量制备方法是未来高频软磁复合材料的发展趋势。

砷化镓衬底加工技术研究及其新发展

摘要:第二代半导体砷化镓(GaAs)材料是衬底外延生长和器件制备的基础材料,其晶片表面要求超光滑、无表面/亚表面损伤和低的残余应力等,且其表面平坦化质量决定了后续外延层的质量,并最终影响相关器件的性能。通过归纳分析砷化镓单晶材料的本征特性及其切割、磨边、研磨、抛光等技术的研究进展,对砷化镓超光滑平坦化加工技术未来的研究方向进行展望。