晶圆键合设备对准和传送机构研究综述

摘要:随着微机电系统和3D集成封装的快速发展,多功能高性能器件、小体积低功耗器件、耐高温耐高压器件以及小型化高集成度器件是目前封装领域研究的重点。晶圆键合设备对于这些高性能、多功能、小型化、耐高温、耐高压、低功耗的集成封装器件的量产起着至关重要的作用,因此对晶圆键合设备及其对准机构和传送机构的研究也十分重要。介绍了常用的晶圆键合设备与晶圆键合工艺、对准机构和传送机构的工作原理以及主要的晶圆键合设备厂商现状,同时对晶圆键合设备对准和传送机构的发展趋势进行展望,其未来将朝着高精度、高对准速度、高吸附度和高可靠性的方向发展。

射频组件用键合金带的研究进展

摘要:射频组件的飞速发展促进了5G通信技术的推广应用。金带作为射频组件封装用关键键合材料,将板级系统集成于1 个完整的组件电路系统中,对组件尺寸和性能起着至关重要的作用。目前键合金带的研究与开发已经成为学术界和产业界的研究热点,对近年来射频组件用键合金带在工业应用中的研究进展进行论述和分析,归纳了微量元素对金带的强化机理和对键合性能的影响。重点介绍了键合金带与键合金丝的微波特性,在相同条件下,键合金带的信号传输能力优于金丝,尤其是在高频段(20 GHz以上)键合金带信号传输能力更加显著。对键合金带的制备工艺和工程应用中遇到的问题进行了梳理,总结了键合金带未来的发展趋势。

无凸点混合键合三维集成技术研究进展

摘要:数字经济时代,高密度、低延迟、多功能的芯片是推动人工智能、大模型训练、物联网等高算力需求与应用落地的基石。引线键合以及钎料凸点的倒装焊存在大寄生电容、高功耗、大尺寸等问题,使传统封装难以满足窄节距、低功耗、小尺寸的应用场景。无凸点混合键合技术能够实现极窄节距的互连,在有效避免倒装焊凸点之间桥连短路的同时降低了寄生电容,减小了封装尺寸和功耗,满足了高性能计算对高带宽、多功能的要求。对无凸点混合键合技术所采用的材料、键合工艺与方法以及当前在三维集成中的应用展开介绍,并对其发展趋势进行了展望。

三维异构集成的发展与挑战

摘要:三维异构集成技术带动着半导体技术的变革,用封装技术上的创新来突破制程工艺逼近极限带来的限制,是未来半导体行业内的关键技术。三维异构集成技术中的关键技术包括实现信号传输和互连的硅通孔/玻璃通孔技术、再布线层技术以及微凸点技术,不同关键技术相互融合、共同助力三维异构集成技术的发展。芯片间高效且可靠的通信互联推动着三维异构集成技术的发展,现阶段并行互联接口应用更为广泛。异构集成互联接口本质上并无优劣之分,应以是否满足应用需求作为判断的唯一标准。详述了三维异构集成技术在光电集成芯片及封装天线方面的最新进展。总结了目前三维异构集成发展所面临的协同设计挑战,从芯片封装设计和协同建模仿真等方面进行了概述。建议未来将机器学习、数字孪生等技术与三维异构集成封装相结合,注重系统级优化以及协同设计的发展,实现更加高效的平台预测。

集成电路互连微纳米尺度硅通孔技术进展

摘要:集成电路互连微纳米尺度硅通孔(TSV) 技术已成为推动芯片在“后摩尔时代”持续向高算力发展的关键。通过引入微纳米尺度高深宽比TSV 结构,2.5D/3D 集成技术得以实现更高密度、更高性能的三维互连。同时,采用纳米TSV 技术实现集成电路背面供电,可有效解决当前信号网络与供电网络之间布线资源冲突的瓶颈问题,提高供电效率和整体性能。随着材料工艺和设备技术的不断创新,微纳米尺度TSV 技术在一些领域取得了显著进展,为未来高性能、低功耗集成电路的发展提供了重要支持。综述了目前业界主流的微纳米尺度TSV 技术,并对其结构特点和关键技术进行了分析和总结,同时探讨了TSV技术的发展趋势及挑战。

基于硅通孔互连的芯粒集成技术研究进展

摘要:通过先进封装技术实现具有不同功能、工艺节点的异构芯粒的多功能、高密度、小型化集成是延续摩尔定律的有效方案之一。在各类的先进封装解决方案中,通过硅通孔(TSV)技术实现2.5D/3D封装集成,可以获得诸多性能优势,如极小的产品尺寸、极短的互连路径、极佳的产品性能等。对TSV技术的应用分类进行介绍,总结并分析了目前业内典型的基于TSV互连的先进集成技术,介绍其工艺流程和工艺难点,对该类先进封装技术的发展趋势进行展望。

三维集成电路先进封装中聚合物基材料的研究进展

摘要:人工智能、大数据、物联网和可穿戴设备的迅猛发展,极大地催生了对高端芯片的需求。随着摩尔定律发展趋缓,尺寸微缩技术使芯片遭遇了物理节点失效、经济学定律失效,以及性能、功耗、面积指标不足等诸多问题。作为延续和拓展摩尔定律的重要赛道,三维先进封装技术已成为推动高端芯片向多功能化以及产品多元化集聚发展的重要动力。先进封装技术的迅猛发展对聚合物基关键封装材料的耐腐蚀性、电气、化学和机械性能都提出了更高的要求。针对三维集成电路的先进封装工艺需求,论述了不同聚合物基关键材料的研究进展及应用现状,明晰了不同聚合物基材料所面临的挑战和机遇,提出了相应的解决方案,并展望了未来的研究方向。

面向大算力应用的芯粒集成技术

摘要:随着先进制程接近物理极限,摩尔定律已无法满足人工智能大算力需求。芯粒技术被公认为延续摩尔定律,提升芯片算力的最有效途径。针对芯粒技术研究热点,从集成芯片的应用与发展、典型芯粒封装技术、芯粒技术的挑战和机遇方面进行了系统性的梳理。详细列举了当前芯粒技术的应用成果,分析了2.5D、3D堆栈以及3D FO封装技术特点。

硅转接板制造与集成技术综述

摘要:集成电路制程发展放缓,具有高密度、高集成度以及高速互连优势的先进封装技术成为提升芯片性能的关键。硅转接板可实现三维方向的最短互连以及芯片间的高速互连,是高算力和人工智能应用的主流封装技术。从硅转接板设计、制造以及2.5D/3D集成等方面,系统阐述了硅转接板技术的发展现状和技术难点,并对相关关键工艺技术进行详细介绍。

硅通孔3D互连热-力可靠性的研究与展望

摘要:硅通孔(TSV)技术是3D集成封装中用于实现高密度、高性能互连的关键技术,TSV的热-力可靠性对3D集成封装的性能和寿命有直接影响。从TSV的制造工艺、结构布局、材料可靠性以及评估方法等多个方面对TSV 3D互连的热-力可靠性进行研究,对其研究方法和研究现状进行总结和阐述。此外,针对TSV尺寸减小至纳米级的发展趋势,探讨了纳米级TSV在应用于先进芯片背部供电及更高密度的芯片集成时所面临的可靠性挑战。