细晶制造科学与工程: 理论、应用、发展

摘要: 细晶制造一般指通过各种制造技术与工艺将构件中粗大的宏微结构进行细化,促进细晶组织、化学成分、物理性质和加工性能的空间分布均匀性,减小构件局部形性协同离散超差,提升金属构件整体服役性能。典型粗大组织包括柱状晶、树枝晶、金属间化合物和网状共晶等。细晶制造具有重要科学和工程意义,广泛应用于航空航天、轨道交通、汽车行业、海洋船舶和基础建设等领域,其关键技术是实现金属细晶结构调控工程化。细晶结构调控工程化的主要方法有细晶凝固和固态变形,前者为重点论述内容。在细晶结构调控工程化的机理/理论或高效细化剂方面,研究工作取得了诸多进展。通过Al 和Mg 金属及合金的铸造实验,众多学者发现凝固细晶调控主要取决于形核颗粒和偏析元素。事实上,细晶凝固研究已涵盖到了Al、Mg、Fe、Ti、Cu、Sn、Zn 和中/高熵合金等金属构件,细晶结构尺寸可调控范围包括: 非晶—纳米晶—亚微米晶—微米晶—亚毫米晶—毫米晶—厘米晶—大单晶。但是,适用于所有金属细晶凝固的共性科学机理/理论尚未完全形成共识。并且,基于现有理论所开发的新型晶粒细化剂效率并不一定都高,这表明当前理论可能忽略了其它未发现的调控因素。基于70 多年来细晶凝固领域科学发展,总结了金属凝固细晶调控的共性科学基础与工程实践研究,阐明了当前主流的铸造金属细晶调控理论的异同,揭示了细晶铸造所需细化剂的本征物化条件,简述了固态形变细晶与缺陷工程化,最后探索了细晶制造在航空航天环形构件研发中的工程化应用。

无人直升机六足式起落架设计与控制算法

摘要:无人直升机在作战、巡逻、反潜、救援、运输中发挥极其重要的作用,但是传统起落架形式对起降环境要求较高.针对复杂地形自适应起落、恶劣海况舰面起降和停放以及应急坠撞高生存力等问题,提出了一种基于多连杆机构设计的无人直升机仿生腿式起落架系统,并完成了控制算法研究和建模仿真.首先从仿生腿数量、分布形式、腿部自由度配置和需要完成的功能等方面对仿生腿式起落架机械构型进行分析,并完成了六足式起落架运动学和动力学分析.然后针对仿生腿式起落架自适应着陆过程,完成着陆缓冲和地形建模算法的研究.最后,基于控制算法搭建虚拟样机仿真模型,完成了多种地形的仿真分析和样机测试.研究结果表明,所设计的仿生腿式起落架结构和控制算法可完成动态自适应着陆,实现着陆过程的平稳缓冲.

激光增材制造技术发展及在航天领域的应用进展

摘要:增材制造(AM)技术作为近30多年来发展起来的新型数字化制造技术,具有快速制造复杂结构产品、高效利用原材料、可高度优化产品结构及适应个性化小批量生产等优点,非常契合航天装备日益整体化、复杂化、轻量化、结构功能一体化制造需求,为传统航天制造业的转型升级提供了巨大契机。近年来,以金属粉末为原材料、以激光为热源的激光增材制造(LAM)技术已成为AM技术领域最为热门的研究方向之一,其在航天领域的应用范围已从零部件级逐渐发展至整机级,且正在迈向工业化和智能化。本文针对航天领域广泛应用的3类典型轻质高强金属材料(铝合金、钛合金及镍基高温合金)、3类典型结构(大型整体结构、异种金属结构、发动机整机结构),介绍了近年来国内外LAM技术的发展及在航天领域的应用进展,分析了当前存在的问题和不足,并对未来LAM技术潜在研究发展方向进行了展望。

球形钛合金粉末制备技术及航空增材制造应用研究进展

摘要:钛合金具有高强轻质耐高温的特点,因而成为拥有巨大前景的航空结构材料。传统的机械制造工艺难度大、成本高,限制了钛合金的应用。增材制造(AM)作为新兴的先进制造技术,可以通过逐层加工的方式制造出具有较高三维精度的金属部件,从而实现钛合金的近净形加工。因此,首先介绍了球形钛合金粉末制备技术,其中包括等离子旋转电极雾化法(PREP)、电极感应气体雾化法(EIGA)、等离子体雾化(PA)和等离子球化技术(PS)等,对比4 种球形钛合金粉末的制备技术和优缺点,以及在航空增材制造的应用,包括激光选区熔化(SLM)、电子束选区熔化(EBSM)和激光熔化沉积(LMD)等,总结了不同钛合金粉末制备技术在航空增材制造的应用特点和发展趋势,并指出钛合金增材制造未来发展的关键是低间隙钛粉的制备,增材制造设备高精度、高效率和大型化将是未来的发展趋势。

航天器用材料应用验证技术体系

摘要:本文基于钱学森的“综合集成方法论”,结合我国航天器材料的研制及应用特点,阐述了应用验证技术体系基本原理,并总结工程实践经验,提出建设要点。该体系通过材料特性表征及应用情况的宏观与微观研究,利用试验验证、专家决策支持、计算仿真、归纳演绎、信息处理等方法,形成了多指标评价、多角度分析、综合评判的材料工程应用质量控制系统,发挥了人机结合、定性与定量结合、理论与实践结合以及多学科融合的系统工程优势,为我国航天装备自主发展奠定基础。

航空金属材料热加工仿真研究现状

摘要:目前,双碳目标日益成为我国经济高质量发展的绿色引擎,而热加工作为改善金属材料使用性能的重要基础工艺,存在着影响因素众多、研发周期长的问题。因此,开展模拟工艺参数优化设定、多场耦合实体仿真以及精细化控制工艺,进行材料组织-变形-性能协同调控方法的研究是十分必要的。介绍了近年来国内外热加工数值模拟方法,并对典型航空金属材料热加工数值模拟研究进展进行了介绍,最后对未来发展方向进行了展望。

8Cr4Mo4V高温轴承钢热处理及表面改性技术的研究进展

摘要: 8Cr4Mo4V钢是我国应用较为广泛的一种高温轴承钢,主要用于航空发动机主轴轴承的制造。随着发动机主轴轴承的服役工况愈发恶劣,对材料性能的要求也越来越高,国内外学者开展了大量8Cr4Mo4V 钢性能提升的研究工作。首先,介绍了8Cr4Mo4V钢化学成分优化的研究进展; 其次,重点分析了8Cr4Mo4V钢热处理技术发展,包括传统淬回火、贝氏体等温淬火及尺寸稳定化等热处理工艺; 然后,介绍了8Cr4Mo4V钢表面强化技术的研究进展及相关成果,涉及表面合金化、涂层沉积、喷丸强化及复合强化技术; 最后,结合8Cr4Mo4V钢服役需求及相关技术研究现状对其后续研究方向进行了展望。

航空电磁超材料研究进展及发展建议

摘要:电磁超材料是由亚波长微结构周期排列而成的人工复合材料,对电磁波有很强的传导调控作用或吸收作用,在航空武器装备隐身设计领域被广泛研究。本文首先介绍了电磁超材料的概念,综述了电磁调控型超材料、电磁吸收型超材料、主动可调型超材料和智能超材料的最新研究进展;然后介绍了航空电磁偏折超材料、电磁吸收超材料和频率选择超材料的隐身机理及应用研究现状,分析认为隐身机理丰富和可设计性强是电磁超材料有别于传统吸波材料的主要优势。从拓展吸波频谱、增强吸波性能、吸波智能可调三方面对电磁超材料提出发展建议,包括吸波频谱进一步向红外、激光、紫外波段拓展,宽频吸波性能进一步提升,吸波频带智能可调。

纤维多孔陶瓷的研究进展

摘要:纤维多孔陶瓷是利用黏结剂将随机分布的陶瓷纤维进行黏接,形成具有鸟巢形态的多孔材料,内部具有大量三维联通孔,其具有轻质、高气孔率、高比表面积、高效隔热的特性。纤维多孔陶瓷为飞行器提供良好热防护效果的同时,可明显减轻其质量,降低发射成本,是航天器大面积热防护系统极具潜力的候选材料。本文主要对近年来纤维多孔陶瓷材料有关纤维骨架、黏结剂、制备方法,以及其在性能优化等方面的研究工作进行了梳理、总结,展望纤维多孔陶瓷在多重热防护方式、集成化及工程化等方面的发展。

航空复合材料连接成形技术研究进展

摘要:纤维增强复合材料具有高比强度、高比模量、结构性能优异以及可设计性强等优势,能够实现构件轻量化和结构-功能设计一体化,在航空航天、交通运输、能源动力以及国防科技等领域具有重要的战略地位。随着纤维增强复合材料在航空航天等领域的大量应用,复合材料之间及其与轻质合金间的高性能-高效率连接成形技术成为航空结构强度和稳定性的重要保障之一。综述纤维增强复合材料连接成形技术的最新研究进展,着重讨论复合材料间及其与轻质合金间的机械连接、胶粘剂连接以及焊接工艺。较全面地论述和分析各类复合材料连接成形的技术特征,对比总结各类连接成形技术的优缺点以及连接结构性能的提升能力,提出各类复合材料连接成形技术的未来发展和研究趋势。