柔性电化学传感器的材料选择研究进展

摘要:电化学传感器作为传统传感器的一种,具有效率高、响应性好和灵敏度高等优点。而柔性电化学传感器具有这些特点的同时,凭借其优异的柔韧性、拉伸性、可折叠性和电化学稳定性,被广泛应用于医疗卫生、环境监测和食品安全等方面。此外,该类传感器还具有方便携带、成本较低、灵敏度高和选择性好等特点。本文立足于柔性传感器活性材料的选择,从无机材料、有机材料、酶和天然材料入手,通过分析与总结近几年的研究成果,介绍材料的选择对电化学传感器性能的影响,重点阐述了不同材料在柔性电化学传感器方面的制备及应用,表明柔性电化学传感器在生产生活中发挥着不可替代的作用。最后对现阶段柔性传感器的研究应用存在的问题与挑战进行总结,并对其未来发展方向进行展望。

面向毫米波射频互联的超低弧金丝球焊工艺方法研究

摘要:引线键合工艺是实现毫米波射频(RF)组件互联的关键手段之一。随着毫米波子系统的快速发展,毫米波组件的工作频段越来越高,对射频通道互联金丝的拱高提出了新的要求。过高的引线弧度会使得系统驻波变大,严重影响电路的微波特性。球焊工艺由于引线热影响区的存在,难以满足射频互联中短跨距、低弧高的需求。采用弯折式超低弧弧形工艺,通过对25μm金丝热超声球焊成弧过程中各关键参数的优化试验,将热影响区折叠键合在第一焊点上,在保证引线强度的前提下,实现了300μm短跨距、80μm超低弧高的金丝互联,为球焊工艺在毫米波射频组件互联中的应用提供了实现思路。

微波等离子体化学气相沉积法制备大尺寸单晶金刚石的研究进展

摘要: 金刚石作为一种超宽禁带半导体,是下一代功率电子器件和光电子器件最有潜力的材料之一。然而,高品质、大面积(大于2 英寸)单晶衬底的制备仍是金刚石器件产业应用亟待解决的问题。介绍了目前受到广泛关注的微波等离子体化学气相沉积法(MPCVD)获得大尺寸金刚石单晶衬底的技术方案,即单颗金刚石生长、拼接生长以及异质外延生长。综述了大尺寸单晶金刚石外延生长及其在电子器件领域应用的研究进展。总结了大尺寸单晶金刚石制备过程中面临的挑战并提出了潜在的解决方案。

第三代宽禁带功率半导体及应用发展现状

摘要:近年来,以碳化硅和氮化镓为代表的第三代宽禁带功率半导体迅猛发展,已成为中国功率电子行业的研发和产业化应用的重点。抓住第三代宽禁带功率半导体的战略机遇期,实现半导体材料、器件、封装模块和系统开发的自主可控,对保障工业创新体系的可持续发展至关重要。在分析第三代宽禁带功率半导体重要战略意义的基础上,综述了其材料、器件研发和产业的发展现状,阐述了碳化硅及氮化镓器件在当前环境下的应用成果,剖析了第三代半导体行业存在的关键问题。建议在国家政策的进一步领导之下,发挥行业协会和产业联盟的桥梁和纽带作用,对衬底材料、外延材料、芯片与器件设计和制造工艺等产业链各环节进行整体支撑,引导各环节间实现资源共享、强强联合,上下游互相拉动和促进,形成一个布局合理、结构完整的产业链。

引线框架用铜带产品现状及研发进展

摘要: 文章综合论述了电子引线框架铜带产品的现状,分析了国内产品普遍存在的质量问题及解决方向,指出了新一代及新型框架铜带的研发进展。

深度学习赋能微纳光子学材料设计研究进展

摘要:光子学结构设计是微纳光学器件和系统研究的核心。许多人工设计的光子学结构,比如超材料、光子晶体、等离激元纳米结构等,已经在高速可视通信、高灵敏度传感和高效能源收集及转换中得到了广泛的应用。然而,该领域中通用的设计方法是基于简化的物理解析模型及基于规则的数值模拟方法,属于反复试错的方法,效率低且很可能会错过最佳的设计参数。因此,快速得到设计参数和光谱响应信息之间的潜在关联性,是实现光子学器件高效设计的关键。在过去的几年里,深度学习在语言识别、机器视觉、自然语言处理等领域发展迅速。深度学习的独特优势在于其数据驱动的方法,可以让模型从海量数据中自动发现有用的信息,这为解决上述光子学结构设计问题提供了一种全新的方法。本篇综述从不同的微纳光子学结构设计的应用场景出发,介绍了不同的深度学习模型在光子学设计领域中的适用范围和选择依据,并对该领域未来的机遇与挑战进行了总结与展望。

大尺寸金刚石晶圆复制技术研究进展

摘要:半导体技术的发展离不开大尺寸晶圆的高效制备。在半导体领域,晶圆复制可以通过同质外延生长后进行切割或者基于异质衬底进行异质外延来实现,从而批量生产。金刚石作为新型超宽禁带半导体材料,在电真空器件、高频高功率固态电子器件方面具有良好的应用前景。而由于金刚石材料具有极高硬度,晶圆复制也面临诸多问题。传统的激光切割方法虽然可以实现对超硬特性金刚石进行加工,但其较高的加工损耗已经无法满足大尺寸晶圆的制备需求,呕需开发损耗小、效率高的金刚石晶圆复制技术。文章介绍了目前常见的半导体晶圆复制技术,总结了金刚石复制技术的研究进展及现阶段发展水平,并对未来大尺寸金刚石晶圆复制技术的发展方向进行了分析与展望。

聚多巴胺(PDA)制备的电极材料在超级电容器中的应用进展

摘要: 现今,能源短缺的严峻形势将会逐渐影响人们的生产生活,所以开发新的储能元件成为科学家的研究重点。其中,超级电容器作为一种优异的储能器件,备受关注,但受限于其能量密度和功率密度不高而不能满足大规模的实际应用需求。因此,开发新的电极材料,成为解决此问题的方法之一。聚多巴胺(PDA)作为一种新材料,具有很多优点,如,高碳化率、高粘附性、多种官能团(邻苯二酚、胺和亚胺,大π电子结构)等。将PDA 作为电极材料,是最近才出现的热门课题,PDA 利用自身的高含碳量可以作碳电极;此外,自身含有胺基官能团可进行杂原子掺杂;最重要的是可以作为粘结剂,不仅能牢牢吸附外加材料,而且能够修饰复合材料内部结构,参与赝电容反应,增加复合材料比电容。在本文中我们将根据PDA 与不同物质复合在一起的分类方式,分别介绍PDA 在超级电容器中参与一元、二元、三元复合电极材料的应用。

柔性超级电容器电极材料制备方法研究进展

摘要:随着柔性超级电容器在可穿戴、小型化、便携式、柔性消费电子产品中的潜在应用,新材料、新加工技术和新设计得到了推广。电极材料是柔性超级电容器中重要的组成部分,其优异的性能决定了整个器件的应用。通过介绍柔性超级电容器电极材料的制备方法,总结了柔性超级电容器现阶段发展所面临的挑战,期望为制备高性能的柔性超级电容器提供参考。

半导体纳米晶体的冷等离子体合成: 原理、进展和展望

摘要:冷等离子体已发展成为纳米材料合成领域的重要技术途径. 无需化学溶剂和配体, 冷等离子体为高品质半导体纳米晶体的生长提供了独特的非热力学平衡环境: 等离子体中的高能电子与纳米颗粒碰撞使得纳米颗粒带电, 可降低或消除纳米颗粒之间的团聚; 高能表面化学反应能够选择性地将纳米颗粒加热到远超环境气体温度的温度; 气相中生长物和固相纳米颗粒表面结合物之间化学势的巨大差异, 有利于实现纳米晶体的超高浓度掺杂. 本文综述了冷等离子体合成半导体纳米晶体的研究现状, 详细讨论了冷等离子体中纳米颗粒形核、生长和晶化的基本原理, 总结了冷等离子体在单元素、化合物和复杂核壳结构纳米晶体方面的研究进展, 特别强调了冷等离子体在纳米颗粒尺寸、形貌、结晶状态、表面化学和组分等性能调变上的技术优势, 概述了超掺杂纳米晶体呈现的新颖物性, 展望了冷等离子体技术在纳米晶体合成领域的应用前景.