微纳铜材料的制备及其在封装互连中的应用

摘要:半导体器件的快速发展对封装互连材料提出了更高的要求。微纳铜材料具有良好的导电、导热和机械性能。与常用的微纳银相比,微纳铜具有更强的抗电迁移能力和更低的成本,在封装互连领域被广泛应用。微纳铜材料的制备方法可分为化学法、物理法、生物法3 类,其中化学液相还原法以低成本、高可控、工艺简单等优势占据重要地位。不同的封装互连工艺步骤需要不同形貌的微纳铜颗粒。微纳铜材料在封装互连中主要应用于芯片固晶、Cu-Cu键合、细节距互连等工艺,探讨了微纳铜材料在以上工艺中的应用,并对微纳铜材料在封装互连中的应用进行了展望。

后摩尔时代芯片互连新材料及工艺革新

摘要:受高算力芯片的需求驱动, 尽管摩尔定律日趋减缓, 高端芯片的工艺复杂度和集成度仍在逐代增大。随着前道工艺中晶体管架构与其集成密度不断优化提升, 后道工艺所涉及的芯片内互连技术挑战愈发严峻, 迫切需要对互连材料与工艺进行革新。同时, 高集成度的系统级3D封装也是高性能芯片的关键解决方案, 其中核心的3D封装技术对芯片间互连材料与工艺不断提出新的要求。为此, 本文系统探讨了后摩尔时代芯片内和芯片间多代候选互连材料及其工艺的潜力及挑战, 从材料创新、工艺优化、架构突破、设计范式等多方面综合研判了未来互连技术的发展路径, 并对超导互连、光互连等颠覆性互连技术做了前瞻性分析, 可以预见互连材料的革新将有力推动新的芯片技术革命。

碳材料改性的BiOX光催化材料的研究进展

摘要:环境与能源问题严峻,人们迫切需要开发一些高效、环保、稳定的光催化剂。卤氧化铋(BiOX,X 为Cl、Br、I)因其独特的层状结构、优异的光学、电学性能而受到光催化领域的广泛关注。但BiOX存在光吸收不足、电子−空穴(electron-hole,e−−h+)快速复合、载流子浓度有限等问题而限制了它的应用。利用碳材料修饰BiOX可以极大地提升BiO X 的光催化性能。简要介绍了BiOX的结构、性质、改性方案,碳材料基本类型和性质,主要综述了近几年零维,维,二维,三维碳材料改性的BiOX光催化剂的研究进展,并分析了碳材料对BiOX光催化剂的提升机制,最后展望了碳材料改性的BiOX所面临的机遇和挑战。

用于深部组织微创及无创连续监测的柔性电子器件

摘要:深部组织信号与疾病间有着强烈的相关性, 临床上对深部组织的检测诊断一般依赖于医学影像设备等大型仪器, 成本高昂且不利于长期监测。不同于笨重的大型设备, 微创及无创的柔性电子器件可以在体长期佩戴,实现深部组织信号的连续采集, 有助于疾病的早期诊断, 进行精准化、个性化治疗。在本综述中, 我们讨论了深部组织的生理、生化信号的检测机制, 重点分析器件的制备方法、关键性能指标以及数据无线传输技术。最后提出了该领域存在的挑战和可能的解决策略。

蓝宝石化学机械抛光液的研究进展

摘要:简介了蓝宝石化学机械抛光(CMP)的基本原理,从磨料、pH 调节剂、表面活性剂、配位剂和其他添加剂方面概述了近年来蓝宝石CMP 体系的研究进展,展望了蓝宝石CMP 体系未来的研究方向。

我国人工智能芯片发展探析

摘要:人工智能(AI)芯片是支撑智能技术发展的核心硬件,其技术进步对国家科技创新、产业发展、经济增长具有重要意义。本文从云端智能芯片、边端智能芯片、类脑智能芯片3个方面总结了AI 芯片的国际发展趋势,分析了我国AI芯片的应用需求,从芯片设计、制造、封装、测试等方面梳理了相关产业与技术的发展现状及趋势。当前,国产AI芯片的性能、技术、产业链存在短板,亟需开展自主创新与产业协同;国产AI芯片开发面临高成本、长周期的挑战,亟需平衡融资压力并积累发展经验;国内AI芯片领域人才短缺,亟需提高培育质量并控制流失率。为此,论证提出了我国AI芯片的发展路径,即突破技术瓶颈、加速产业化、拓展国际化、实施市场扶持,重点采取技术创新和重点项目建设、新型芯片架构和开源产业生态建设、技术标准体系制定、“产教研”融合等举措,以推动我国AI芯片产业可持续和高质量发展。

基于专利数据的中国AI 芯片创新态势研究

摘要:以大模型为核心的新一代人工智能生成内容(AIGC)技术(以下简称生成式人工智能技术)正代表着AI 技术新的发展方向,而当前对于大模型的发展共识(即堆积算力和高质量数据可以继续创造“奇迹”)同时也促使人工智能科技创新转入“万卡”时代。由AI 芯片所构筑的算力“护城河”成为支撑AI 迈向通用人工智能(AGI)的必备需求。为研判我国AI 芯片技术创新的发展态势,本文对我国专利数据进行了检索和分析,梳理和描绘了AI 芯片技术的创新现状与趋势,并探索构建了代表性创新主体的创新潜力专利评估因子,以期形成对未来发展势能的理解与判断。最后,基于专利数据解读和分析,形成了助推我国AI 芯片创新发展的有关建议。

LTCC封装技术研究现状与发展趋势

摘要:低温共烧陶瓷(Low Temperature Co-Fired Ceramics, LTCC)封装能将不同种类的芯片等元器件组装集成于同一封装体内以实现系统的某些功能,是实现系统小型化、集成化、多功能化和高可靠性的重要手段。总结了LTCC基板所采用的封装方式,阐述了LTCC基板的金属外壳封装、针栅阵列(Pin Grid Array, PGA)封装、焊球阵列(Ball Grid Array, BGA)封装、穿墙无引脚封装、四面引脚扁平(Quad Flat Package, QFP) 封装、无引脚片式载体(Leadless Chip Carrier, LCC)封装和三维多芯片模块(Three-Dimensional Multichip Module, 3D-MCM)封装技术的特点及研究现状。分析了LTCC基板不同类型封装中影响封装气密性和可靠性的一些关键技术因素,并对LTCC封装技术的发展趋势进行了展望。

纳米纤维素基湿度响应智能器件的研究进展

摘要:纳米纤维素来源广泛、绿色可再生,作为纤维素衍生材料,由于其特殊的结构特性,使其具有高机械强度、高结晶度、大比表面积等特点。基于纳米纤维素的湿度响应智能器件因其丰富的亲水基团(例如羟基和羧基) 而显示出出色的响应性能,因此纳米纤维素可以作为一种湿度敏感材料来制备高性能湿度响应智能器件。本文介绍了纳米纤维素的分类、来源及湿度响应智能器件的分类及响应原理,重点阐述了不同纳米纤维素在湿度响应智能器件方面的制备及应用,总结了不同类型纳米纤维素与导电材料复合的湿度响应智能器件的性能及优缺点,最后对纳米纤维素基湿度响应智能器件的研究应用存在的问题与挑战进行归纳总结,以期为纳米纤维素基复合材料在湿度响应智能器件中的发展提供理论支持。

HBM 制造技术演进与今后的发展趋势

摘要:随着智能数据应用的飞速发展,内存带宽限制导致的算力瓶颈日益明显。面对市场对高性能计算和数据处理能力不断攀升的需求,解决这一瓶颈问题正变得越来越具有挑战性。在这一背景下,高带宽内存(High Bandwidth Memory,HBM)被视为突破算力瓶颈的关键方案之一,并且已经成为当前先进封装技术领域的研发热点。本文将回顾HBM 制造工艺的发展历程,分析其技术优势,并对其未来的发展方向进行展望。