照明与显示用绿光发光材料的研究进展

摘要:新型固态照明与显示技术具有亮度高、效率高、节能环保等显著优势,已成为室内外照明、汽车大灯、激光电视等高端照明和显示领域的主流技术。绿光发光材料作为荧光转换型照明与显示的核心材料,其性能直接决定器件的服役行为。然而,在高功率密度激光运转下,绿光发光材料的温度急剧升高,导致其量子效率下降、发光衰减,严重制约了固态照明与显示技术的应用。为此,不同物理形态的绿光发光材料应运而生。本文综述了激光显示用绿光发光材料的最新研究进展,系统地总结了粉末、陶瓷、微晶玻璃、薄膜等绿光发光材料在热稳定性、半高宽、色域、色度参数等性能特征的调控策略。讨论了绿光发光材料面临的发光效率和器件封装等挑战,并展望了照明与显示用绿光发光材料的研究进展。

基于相变材料Ge2Sb2Te5 的光纤存储器

摘要: 光纤的典型功能是通信和传感,该文赋予光纤存储的功能,设计了一种全光纤存储器,以满足光纤通信系统智能化发展的需要。利用单模光纤(single-mode fiber, SMF)与多模光纤(multimode fiber, MMF)同轴焊接,并通过磁控溅射方法将Ge2Sb2Te5(GST)材料沉积在MMF 端面,端面出射的类贝塞尔光束可以切换GST 的相态。MMF 的长度影响端面光场,最终选择1.5 mm 长的MMF 以实现具有任意级别访问能力、高光学对比度、稳定重复性良好的非易失性存储器。该存储器可以实现11 级存储,并能够在11 个存储等级间进行任意且稳定的切换,光学对比度达到50%,重复循环至少34 次。

光学元件超精密磨抛加工技术研究与装备开发

摘要:在深入实施“中国制造2025”的契机下,我国的超精密加工领域突破了许多关键瓶颈技术,并取得了众多显著的科研成果,建设了一批高水平超精密加工技术创新平台、人才成长平台和应用示范基地,开创了一条我国超精密产业的自主创新发展之路,解决了该领域一些相对应的技术难关。本文主要介绍了厦门大学精密工程实验室在光学超精密加工技术与装备方面的研究进展,围绕大口径光学非球面元件的磨削与抛光加工,阐述课题组研发的加工工艺、磨削与抛光装备、装备监控与控制软件以及相关单元技术。这些研究成果可为实现高端光学元件的超精密加工提供制造加工技术支持与装备解决方案。

飞秒激光全划切超薄碳化硅基片

摘要:目的为实现超薄碳化硅基片全划切,需在加工出窄线宽(小于25 μm)的切割槽的同时保证基片的强度。方法使用波长为1 030 nm 的红外飞秒激光对碳化硅基片进行全划切加工,通过扫描电子显微镜和光学显微镜分析脉冲重复频率、脉冲能量、切割速度和扫描次数对切口宽度、深度以及断面形貌的影响,采用能谱仪对不同脉冲能量下的划切断面进行微区元素分析,采用激光共聚焦显微镜测量划切断面粗糙度,以及采用电子万能实验机测试划切样品的抗弯强度。结果划切断面的元素主要有Si、C、O 3 种,O 元素富集在断面的上下边缘位置。SiO2 颗粒喷溅重沉积影响断面微纳结构。断面的粗糙度随脉冲能量的增强而上升,基片强度反而下降。在激光脉冲能量为3.08 μJ、脉冲重复频率为610 kHz、切割速度为4 mm/s、切割12 次的条件下,可以加工出宽度为15 μm、深度高于100 μm 的良好切割槽,断面粗糙度为296 nm,基片抗弯强度为364 MPa。结论切割槽宽度和深度与脉冲重复频率、脉冲能量、切割速度和扫描次数有关。O 元素的分布说明存在SiO2 堆积在断面上下边缘部分的现象。使用小脉冲能量激光进行划切,可以减少SiO2 颗粒喷溅重沉积,从而使断面出现大量熔块状结构,得到粗糙度较低的断面形貌。断面粗糙度降低,意味着划切断面存在的微裂纹等缺陷减少,从而使强度上升。本试验最终采用较优激光划切工艺参数,实现了飞秒激光全划切超薄SiC 基片,槽宽仅为15 μm。由于短脉宽小脉冲能量高重复频率激光的作用以及激光辐射下SiC 材料的相分离机制,基片划切断面烧蚀形貌良好,且抗弯强度较好。

电力电子中高频软磁材料的研究进展

摘要:随着电力电子行业的飞速发展,新型电磁材料的投入使用,对电子元器件的高频磁性能提出了新的要求。磁芯作为电子元器件的核心部件,其发展程度直接决定电子元器件的性能,这就要求具有优异高频软磁性能的材料发展。本文综述了四种软磁材料的发展历程,对每种软磁材料的优缺点进行了归纳总结,同时指出了未来的发展方向,并重点对近年来研究热门的软磁复合材料进行了梳理。粒径大小可控、包覆层对核层的包覆均匀程度以及从实验室走向产业化的大批量制备方法是未来高频软磁复合材料的发展趋势。

碳材料复合金属氧化物在柔性超级电容器的研究进展

摘要:柔性超级电容器因电容量大、可快速充放电、长寿命等优点,在轻便、多功能可穿戴柔性电子产品中具有重要地位。其中,基于碳材料的超级电容器,在导电性、循环稳定性以及机械柔韧性等方面表现优异。然而,由于有限的比表面积,碳材料的双电层比电容提升空间非常有限。金属氧化物,因具有高的理论赝电容,是超级电容器另一类重要的电极材料;但是金属氧化物也面临着导电性差、循环不稳定等缺点。将金属氧化物与碳材料复合,通过充分利用二者各自的优势,来协同提高超级电容器的综合性能是近年来超级电容器研究的一个重要方向。本文综述了碳量子点、一维碳纳米管、石墨烯、三维生物碳等多种形式的碳材料与金属氧化物的复合,以及复合电极材料在柔性超级电容器上应用的最新进展。着重从材料的制备、复合方式到柔性超级电容器储能性能等角度来介绍不同形式的碳材料在复合金属氧化物上各自的特点和优势。最后,对碳基复合材料柔性超级电容器的发展前景进行展望。

基于弱取向外延生长多晶薄膜的OLED研究进展

摘要:有机晶体材料中分子排列规则,形成长程有序、缺陷态密度低的结构,相对于非晶态材料具有很好的热稳定性、化学稳定性以及高的载流子迁移率,使得有机晶体材料在发展高性能 OLED 方面具有巨大的潜力。本文总结了近期利用弱取向外延生长技术发展的多晶薄膜 OLED(C‐OLED)系列工作。

基于硅外延片用石墨基座的温度均匀性研究

摘 要:通过对电磁感应加热的硅外延化学气相沉积反应腔室建立理论分析模型,结合工程实验对比,研究了不同石墨材料和不同基座结构对基座表面温度均匀性的影响。结果显示,在工程中,选择合适的石墨材料、设计合适的基座结构对硅外延片电阻率均匀性有着很大的影响,但在提升产品质量的同时也要平衡经济效益。

硅含量对硅铝合金电子封装材料性能的影响

摘 要:以热等静压方法成形的 AlSi12、AlSi27、AlSi35、AlSi42、AlSi50、AlSi60、AlSi70、AlSi80系列的硅铝合金电子封装材料为研究对象,对 Si 含量对材料的金相组织、热物理性能、力学性能等的影响进行分析评估。

超级电容器及其电极材料纳米三氧化钼的研究进展

摘 要:介绍了超级电容器的工作原理和应用现状,对其三大系列电极材料———炭材料、金属氧化物、导电聚合物的研究进展进行综述,并重点分析了纳米三氧化钼作为超级电容器电极材料的应用前景。  关键词:超级电容器;电极材料;纳米三氧化钼;工作原理;应用现状