第一性原理研究钛合金中的沉淀强化

摘要:为研究合金化对沉淀强化行为的影响,采用第一性原理方法计算了二元Ti-xM (M = Al、V、Cr、Mn、Fe、Co、Ni、Zr、Nb、Mo、Ta、W)合金弹性模量随成分的变化,提出了弹性模量Mo当量概念,以高效计算复杂成分钛合金(如Ti-Al-V 合金以及Ti55521)的弹性模量;结合弹性模量及Russell-Brown 沉淀强化模型,研究了二元Ti-xM (M = V、Cr、Mn、Fe、Co、Ni、Nb、Mo、Ta、W)合金以及Ti55521 合金中的沉淀强化。结果显示,在体积分数及沉淀相颗粒尺寸相同的情况下,Co、Fe、W、Mo、Ni、Mn沉淀强化作用较强,Cr、Nb、Ta 强化作用居中,V强化作用最弱。随合金元素含量x 增加,沉淀强化作用均有所增强。热机械处理Ti55521 合金经短时时效后,沉淀强化作用有所减弱,但长时时效后,沉淀强化效果增强。

高Cr马氏体耐热钢的协同强化机制及形变热处理应用

摘要: 高Cr (9%~12%,质量分数)马氏体耐热钢因其较高的热导率、较低的热膨胀系数以及优异的高温蠕变强度等优点而被认为是超超临界火电机组关键设备升级改造的主选材料。然而,服役过程中高Cr 马氏体耐热钢高温蠕变强度的不断弱化严重影响了其安全可靠性。以往提升高Cr 马氏体耐热钢高温蠕变强度的主要手段是通过合金成分优化设计来促进沉淀相弥散析出,但单一析出强化效应对蠕变强度的提升效果非常有限。近年来,位错-沉淀相-界面协同强化效应在提升高Cr 马氏体耐热钢高温蠕变性能方面表现出显著效果。其原理是通过形变热处理引入位错来促进多种沉淀相弥散析出,同时通过控制相变来细化板条组织,增强位错、沉淀相及界面3 者之间的交互作用,从而实现多类蠕变强化效应的协同提升。本文总结了高Cr马氏体耐热钢的协同强化机制及形变热处理组织调控,从高温蠕变强度提升角度回顾了合金成分的优化历程,阐述了热处理过程中的相变行为及高温组织退化机理,对比分析了单一析出强化效应及形变热处理后位错-沉淀相-界面协同强化效应对其高温蠕变强度的影响规律,并基于焊接接头蠕变失效行为探索了形变热处理对焊接热影响区的组织调控机制,以期为高Cr马氏体耐热钢及其他火电机组用沉淀型强化耐热钢的材料设计及工程应用提供指导。

减振降噪声学超材料的研究与应用进展

摘要:分析减振降噪声学超材料的研究进展,围绕减振降噪超材料研究领域的3 个方向(拓宽带隙、可调带隙和多功能集成)阐述不同类型超材料的机理,比对其减振降噪特性。并在此基础上进一步介绍声学超材料在船舶海洋等实际工程中的应用。超材料利用对结构(包括几何与材料)的设计改变其等效物性参数,以实现声学设计中阻抗匹配或失配的需求,从而实现减振降噪。分析结果表明,超材料的研发与使用将大大拓展船舶减振降噪途径的选择范围,并可以帮助克服低频减振降噪的瓶颈。

高冰级螺旋桨疲劳强度研究

摘要:以某 PC2 冰级螺旋桨为研究对象,将 IACS 规范中2 组交变冰载荷工况的静强度有限元计算数据为输入,分析螺旋桨在应力频率谱和累积疲劳损伤率(MDR)这2 种疲劳准则下的疲劳性能,提出了一种合理和可行的冰区螺旋桨疲劳强度计算方法,并分析了螺旋桨侧斜、纵斜、剖面型式及平均应力修正理论对冰载荷作用下螺旋桨疲劳性能的影响。研究表明:对于非大侧斜桨,正侧斜角和正纵斜角均对疲劳性能有利;导缘和随缘加厚的冰区翼型能显著改善疲劳性能,有利于在保证疲劳强度的情况下实现冰区螺旋桨的轻量化;相对于传统的修正理论,IACS 推荐的平均应力修正理论偏于保守。论文提出的冰区螺旋桨疲劳强度计算方法得到了“雪龙2”号实船走航监测数据的验证。

CTB结构中电池与车身密封设计研究

摘要: CTB(cell to body)电池车身一体化技术在提升续航里程、整车刚度和耐撞性等方面具有很大优势,已成为新能源汽车行业发展新方向,但要将电池上盖与车身地板二合为一,密封是限制CTB技术发展的最大难题之一,目前行业在CTB密封领域的研究还是空白。本文从CTB密封策略、密封结构设计、密封组件选型、失效后果分析和用户工况设计验证展开研究,首次提出攻克行业内CTB密封设计难题的解决方案,加速CTB技术普及应用,推动全球新能源汽车产业电动化转型。

基于辊冲一体式纵梁的轻量化拖挂式房车底盘

摘要:本文将辊冲成型工艺引入拖挂式房车底盘设计和制造。对标某典型拖挂式房车底盘,通过对高强度材料的连续成型,构造一体化的底盘纵梁,并做相应的结构改进,对比分析了两种底盘在满载弯曲和满载制动工况下的受力情况。结果表明:由于辊冲工艺可以实现变截面超长零件的加工和一次冲孔,这一优势带来的材料改进、结构改进和主要构件数量的减少,使底盘纵梁加工在实现轻量化的同时显著提升了生产效率和装配效率。此外,基于高强度板材的变截面纵梁,大大提升了结构的可设计性,进而使承载性能的显著提高成为可能。与某款额定载质量为1.4t的对标底盘相比,结构优化后的底盘可以承受2. 4 t的载荷,且此时两者的变形量相似。

可逆固体氧化物电池电极材料的研究进展

摘要:可逆固体氧化物电池电极材料在应对能源挑战和降低环境污染方面具有重要作用。文章介绍了固体氧化物燃料电池和电解电池的工作原理及它们结合成可逆固体氧化物电池的优点。着重讨论了电极材料选择对电池性能的重大影响,并深入分析了钙钛矿氧化物材料在氧电极氧还原/氧析出反应动力学提升方面的作用。此外,探讨了采用掺杂、离子缺陷引入、合成方法改进以及机器学习等策略来优化电极性能。同时,指出了燃料电极在不同运行模式下面临的挑战,如结构劣化和碳沉积等,为高效、稳定的可逆固体氧化物电池发展提供了新视角和方法。

相变蓄冷材料研究进展

摘要:相变蓄冷材料具有储能密度高、相变温度可控、循环稳定性强的优点,成为目前最有发展前景的储能方式。文章对现有的相变蓄冷材料进行了分类,总结了不同类型材料的优缺点,重点介绍了国内外学者在固-液相变方面的研究进展,罗列了各种材料的热物性和化学特性,对其在医疗冷链、建筑制冷、生鲜冷冻等具体应用中的研究进行了阐述。在此基础上,针对目前相变蓄冷材料存在的导热率低、腐蚀性强、易泄漏和过冷度大等问题,文章提出相应的解决方案并阐述改善机理,对相变蓄冷材料的未来发展进行了展望。

生物炭材料应用于超级电容器的研究进展

摘要:生物炭具有来源广泛、价格低廉、导电性优异、形貌易调控和物理化学性能稳定等优点,被广泛应用于超级电容器领域中。通过调控炭材料的多孔结构与形貌结构、杂原子掺杂、复合高电容量材料以及材料尺度纳米化等,可不断获得超级电容器综合性能优异的生物炭材料。文章首先阐述超级电容器的储能机理及分类,再总结了不同生物质结构、元素特征和各种生物炭表征技术。在此基础上,从炭材料形貌、孔结构、石墨程度、表面官能团、元素掺杂和材料复合角度总结了生物炭材料超级电容器储能性能提升的优化手段。随后,详细介绍了0D、1D、2D、3D 纳米生物炭材料在超级电容器方面的研究进展。为制备高性能超级电容器生物炭电极材料提供了有效的研究参考方向。

航空航天复杂曲面构件精密成形技术的研究进展

摘要:对于当前航空航天飞行器中广泛存在的金属复杂曲面构件的高性能发展需求,提出研发针对叶片类零件、大口径薄壁弯管以及复杂钣金构件的楔横轧短流程制坯、颗粒填料辅助推弯成形以及高能率冲击液压成形等精密成形技术,分别从工艺原理、设备、模具及典型零部件应用等方面对上述技术的研究进展进行阐述和介绍。