航天运载器大型金属构件激光定向能量沉积研究及应用进展

摘要:激光定向能量沉积(LDED)增材制造技术由于成形效率高、材料送进方式灵活、成形自由度高等特点,非常契合当前及未来航天装备结构大型化、整体化、轻量化、高精度发展趋势,并已在运载火箭、载人飞船、火箭发动机等领域实现牵引性应用。本文首先总结了当前铝合金及其复合材料、钛合金及其复合材料、镍基高温合金及其复合材料三类航天装备结构主体材料的LDED研究现状,在此基础上,梳理出了LDED工艺的发展方向及研究进展。此后,重点介绍了航天装备主承力结构、异质合金一体化结构、集成流道整体化结构三类典型结构LDED制造难点、研制及应用进展。最后,对LDED增材制造技术材料、工艺及装备等的发展方向进行了展望。

基于图像处理的碳钢表面激光除锈工艺研究

摘要:激光清洗技术是一种绿色、高效、无接触的先进清洗技术。为探究碳钢表面锈蚀污染层的激光清洗工艺,本文利用红外纳秒激光器,基于正交试验主要研究了激光功率、扫描速度、扫描次数和填充间距等工艺参数对除锈效果的影响规律。通过对激光清洗前后区域进行灰度化处理,并对灰度均值进行极差和方差分析,建立起基于灰度均值特征的碳钢除锈效果评价标准。结果表明,通过图像识别处理能够快速、准确确定碳钢表面状态,为后续激光清洗工艺提供量化评价指标。

超高密度光存储研究进展

摘要:当前,全球数据量正处在爆发增长阶段,为光存储领域带来巨大的发展机遇,然而传统光存储技术的密度受衍射限制,难以满足海量数据的存储需求。为了提升光存储密度,一方面开发了三维空间、偏振、波长等参数为主的多维信息复用技术,另一方面随着纳米技术的发展可突破衍射极限实现超分辨纳米信息存储。本文介绍了超高密度光存储领域的发展现状,分别总结了多维信息复用技术和超分辨光存储技术的代表性成果,梳理不同技术方案可提升存储密度的理论极限,此外,介绍了本课题组基于双光束超分辨光存储技术实现单盘Pb 量级的最新研究进展,最后展望了超高密度光存储面向大数据应用的挑战和发展趋势。

含不锈钢金属丝的功能纺织品开发动态

摘要:简述了不锈钢金属丝的性能,并根据其在纺织品上的使用方法和用途,分为不锈钢微丝和不锈钢纤维。对不锈钢金属丝的发展及其抗静电、防辐射、形状记忆、过滤、吸声等功能性纺织品的研究进展进行了详细的介绍,并阐述了其功能纺织品的发展趋势。

高精度铂铑热电偶特细丝的批量制造工艺

摘要:铂铑热电偶细丝正向高精度和特细丝径方向发展。国内厂家在应对这种趋势时面临诸多问题。作者论述了高精度铂铑热电偶特细丝的批量制造工艺。指出高精度铂铑热电偶特细丝批量制造工艺的关键在于熔炼工艺和拉伸工艺,并对此进行了分析,提出了相应的解决问题的办法。

热处理对医用TiNi细丝显微组织及形状记忆效应的影响

摘要:采用DSC、弯曲实验和扫描电镜分析研究了热处理工艺对医用TiNi合金细丝显微组织、相变温度和形状记忆效应的影响。结果表明,400℃~500℃,30 min~120 min热处理时,随着温度的升高和时间的增长,TiNi 合金细丝中Ti3Ni4析出相增多,相变温度也升高。细丝经500℃,30 min处理后的最大可回复应变量值最大。随弯曲变形量的增加,疲劳寿命缩短。500℃处理的试样疲劳寿命最长。

中科院金属所新型低成本铁基液流电池技术研究取得新进展

近期,中国科学院金属研究所腐蚀电化学课题组在新型低成本铁基液流电池储能技术研究领域取得了新进展。研究人员在前期全铁液流电池研究工作基础上(J. Mater. Chem. A,2021,9,20354;Small,2022,2204356),以铁负极氧化还原反应可逆性为切入点,先后通过电极界面缺陷设计和极性溶剂调,成功实现了充放电过程中铁单质在电极纤维表面的均匀沉积和溶解,并且进一步通过弱化水合氢键网络作用,实现了-20℃低温条件下电解液不凝固及电池稳定运行,有效突破了现阶段全铁液流电池负极材料的技术瓶颈,相关研究结果相继发表在Chemical Engineering Journal和Small杂志上,硕士生宋袁芳、博士生杨静分别为论文的第一作者,李瑛研究员、唐奡研究员为论文的通讯作者。

稀土永磁材料在电动汽车上的应用前景

摘要:在国际形势愈加复杂多变的背景下,加之稀土原料价格的短期大幅波动,稀土减量和替代的话题引起社会各界广泛关注。作为稀土最大消费应用方向之一,稀土永磁材料在电动汽车领域的可替代性和应用前景备受瞩目。关注的核心在于无稀土驱动电机技术上是否可行、商业价值是否更高。

先进电工材料发展战略

摘要:电工材料是电气装备的基础,材料特性直接决定电气装备的极限电磁参数。该文深入探讨了导电材料、绝缘材料、半导体材料、磁性材料与电化学储能材料等几类电工材料的战略研究价值、国内外研究现状、国际前沿动态、学科优先发展方向等;总结了各类电工材料的关键科学问题,指出了我国先进电工材料的重点研究方向与发展战略规划,为从根本上解决制约我国电气装备关键特性的材料基础科学问题提供理论支撑与技术指导。

纳米双相复合磁性材料的研究进展及发展方向

摘要:纳米双相复合磁性材料是一类由软硬磁相在纳米尺度下交换耦合形成的新型永磁材料,这类材料不但因稀土含量少而表现出成本低、温度稳定性高、耐热性和抗氧化性优异等优点,而且兼具高剩磁和高矫顽力特性,理论磁能积高达125.7 MGOe(1 MJ/m3),有望突破单相稀土永磁材料的磁能积瓶颈,成为第4代稀土永磁材料。本文首先回顾了纳米双相复合磁性材料的研究历史,结合理论分析和试验研究成果阐述了增强软硬磁相交换耦合作用对提高纳米双相复合磁性材料磁性能的重要性。然后介绍了纳米双相复合磁性材料的研究进展,从制备工艺、成分设计两个方面提出了纳米双相复合磁性材料的性能优化方法。最后总结了纳米双相复合磁性材料的应用情况,以及发展方向。