高导热石墨烯复合材料研究进展

摘要: 电子器件、智能穿戴设备,以及处于高速发展期的新能源汽车都在朝着轻量化、高功率的方向发展,而散热问题已成为制约微电子和新能源行业发展的瓶颈性难题。石墨烯复合材料在热管理材料领域得到了广泛的关注与研究。综述了当前石墨烯导热复合材料的导热模型、三维石墨烯导热网络的构筑方法、石墨烯表面改性和石墨烯导热复合材料的制备方法。

建筑用生物质基纤维素保温气凝胶研究进展

摘要:建筑保温可以有效降低建筑材料的热损失,对于保持建筑内部的舒适度起着重要的作用。提高建筑材料的保温性能至关重要,特别是通过减少加热-冷却的热量损失来实现节能。因此,研究具有优良保温性能的建筑材料已成为当前保温领域研究的重点之一。与传统的保温建筑材料相比,生物质基纤维素保温气凝胶具有低导热系数、高比表面积、可再生性、成本效益和环境友好型等优越的物理和化学特性,是未来建筑节能技术的理想新型建筑材料。本文综述了近年来生物质基纤维素保温气凝胶的制备技术、研究现状、存在的问题及在建筑材料(屋顶、内外墙和玻璃等) 中的应用。最后,简要讨论了生物质基纤维素气凝胶在保温材料应用中面临的挑战,并对其未来的发展方向进行了展望。

航空发动机数字孪生工程:内涵与关键技术

摘要:航空发动机是集精密工艺与尖端科技于一体,需兼顾高性能、高效率、高可靠、长寿命等多元目标,且依赖设计、制造、试验、运维多方主体紧密合作的国之重器,承载着强国梦想和强军使命。航空发动机数字孪生工程通过充分利用数据、模型、服务等虚拟资产的潜在价值,融合仿真、预测、优化等多种数智化手段,基于全生命周期系统工程的创新模式、多学科协同的高效平台和多要素耦合分析的全局视角,全面提升航空发动机设计、制造、试验、运维能力,能够为航空发动机全产业链加速发展提供新动力。本文从研发、变革、创新3 个角度分析了航空发动机数字化发展趋势,从全生命周期的视角分析提出了航空发动机数字工程的6个阶段的18个需求趋势与挑战;通过分析数字孪生在航空发动机全生命周期中的研用现状,指出航空发动机在理论体系、组织协作、软件平台、标准规范方面的不足;以作者团队前期提出的数字孪生五维模型、数字工程“数智眼”体系架构、数字试验测试验证体系架构为基础理论,进一步提出了航空发动机数字孪生工程的内涵和体系架构,研究了航空发动机数字孪生工程关键技术体系;从思想、技术、模式、产业等角度对发动机数字孪生工程发展提出了若干建议。期望相关工作为航空发动机数字孪生工程数力和智力的开发利用,以及航空发动机设计、制造、试验测试验证、交付、运维、回收全生命周期能力的全面提升提供参考,助力航空发动机数字化、智能化研制水平和服务能力的跨越式发展。

纳米纤维素基湿度响应智能器件的研究进展

摘要:纳米纤维素来源广泛、绿色可再生,作为纤维素衍生材料,由于其特殊的结构特性,使其具有高机械强度、高结晶度、大比表面积等特点。基于纳米纤维素的湿度响应智能器件因其丰富的亲水基团(例如羟基和羧基) 而显示出出色的响应性能,因此纳米纤维素可以作为一种湿度敏感材料来制备高性能湿度响应智能器件。本文介绍了纳米纤维素的分类、来源及湿度响应智能器件的分类及响应原理,重点阐述了不同纳米纤维素在湿度响应智能器件方面的制备及应用,总结了不同类型纳米纤维素与导电材料复合的湿度响应智能器件的性能及优缺点,最后对纳米纤维素基湿度响应智能器件的研究应用存在的问题与挑战进行归纳总结,以期为纳米纤维素基复合材料在湿度响应智能器件中的发展提供理论支持。

高镍层状正极材料失效机理及其改性研究进展

摘要:在现有的商用正极中,富镍层状正极因其高能量密度、较好的倍率性能和合理的循环性能而被广泛应用。目前,Co的价格远高于Ni和Mn,正极材料的研究正朝着高镍“少钴化”甚至“无钴化”的方向推进。本文主要介绍了近年来高镍层状正极材料的研究进展,旨在为未来高镍正极的设计、开发提供重要线索,并推动其实际应用进程。文中首先介绍了高镍正极材料主要失效机理,包括表面/界面降解、阳离子混合、电极-电解质自发寄生反应、气体析出和晶间/晶内开裂。其次,综述了近些年来对高镍材料进行的体相掺杂、表面包覆、成分调整和形貌工程等方面的改性研究和相关进展。最后,对高镍正极材料未来的研究方向和目前的技术挑战进行了展望。

AgCu系电接触材料研究进展

摘要:银铜系电接触材料作为银基电接触材料的一大重要门类在电接触材料行业中因其卓越的电导率、耐磨性、抗熔焊性和广泛应用而占据重要地位。本文对AgCuNi、AgCuV、AgCuO 合金系列以及AgCu/LSCO 等银铜系电接触材料的性能特点、制备工艺和研究现状进行了归纳和阐述。分析了银铜系电接触材料研究中存在的问题,并展望了发展趋势。

4D打印磁响应形状记忆环氧树脂基复合材料制备与性能

摘要:以环氧树脂(EP51) 为基体,乙炔炭黑(ACB) 和镍粉(Ni) 为填料,聚醚多元醇(PPG) 为增韧剂共混制成打印墨水,利用直写3D 打印机制备ACB-Ni/EP51 复合材料。通过流变仪、直写3D 打印机对墨水的流变性能和可打印性进行表征;通过拉力实验机(UTM)、扫描电镜(SEM)、动态热机械分析仪(DMA)、差示扫描量热仪(DSC) 对材料力学性能、微观形貌、动态力学性能、差热性能和形状记忆效应进行表征,探究了填料含量对墨水和材料性能的影响。结果表明:ACB 含量达到12wt% 时,墨水具有良好的可打印性;当Ni 粉含量达到16wt% 时,打印针头堵塞造成打印不连续、不均匀。固化后生成的“海岛”增韧结构使材料拉伸强度明显提高(60 MPa 以上)。随着Ni 粉含量增加,对拉伸强度的影响由促进变为削弱。当Ni 粉含量从6wt%增加至14wt%,形状固定率(Rf) 从99.4% 降至94.2%。在300 kHz 交变磁场作用下,形状发生回复,Ni 粉含量增加使形状回复率(Rr) 和回复速率升高,Rr 从94.8% 提升至99.1%,回复时间从39 s 缩短至17 s。Ni-ACB/EP51 复合材料具有较好的形状记忆性能,在空间可展开结构、驱动器及4D 打印等方面有一定的应用前景。

超材料混凝土减振性能研究现状与展望

摘要:超材料混凝土作为一种具有振动衰减效应的新型材料,由包裹弹性软涂层的金属重芯取代天然粗骨料,与砂浆搅拌而形成。当受动力作用时,超材料混凝土能够利用人工骨料局部共振产生的带隙,衰减混凝土的振动响应。近年来,超材料混凝土因其在高频动力作用下显著的减振性能,在结构抗爆抗冲击领域受到了高度关注,通过改变人工骨料的结构,已经研发出多种形式的超材料混凝土,并针对其振动衰减性能开展了系统的理论分析、数值模拟和试验研究。为推动超材料混凝土在土木工程领域的研究和应用,该研究对超材料混凝土减振性能的研究工作进行了系统地归纳总结,探讨了超材料混凝土在工程性能方面存在的问题和瓶颈,并对超材料混凝土减振性能的研究方向和应用前景进行了展望。