起落架用高速火焰喷涂WC涂层覆盖高强钢海水环境腐蚀与开裂行为

摘要:为探究水陆两栖飞机用起落架材料海洋环境适应性及其失效机制。通过在热轧300M 高强钢表面制备高速火焰喷涂WC 涂层,使用电化学测试、盐雾实验、拉伸实验、疲劳实验,并通过SEM,EDS,XRD 以及CLSM 表征,开展其在人工海水环境中的腐蚀行为研究。研究结果表明,在pH 值为8. 2 的人工海水环境中,WC 涂层发生明显的钝化,具有较好的耐蚀性,这与在碱性环境下涂层中的Co 发生钝化有关。长周期电化学阻抗结果表明,浸泡28 天后,涂层耐蚀性上升,这与表面黏结剂形成的氧化物有关。与300M 基材相比,喷涂后的材料抗拉强度略微升高,这与涂层内部的残余应力释放有关,其在人工海水中的开裂主要受阳极溶解过程控制。随着预腐蚀时间的增加,材料的疲劳寿命发生明显降低,在预腐蚀过程中,环境中的腐蚀性介质进入涂层内部,增加了缺陷的数量,使得涂层提前发生失效,导致材料断裂敏感性增加。WC 涂层有较好的耐蚀性,拉伸过程中残余应力的释放使材料的抗拉强度略微升,经过预腐蚀后涂层提前发生失效,使得材料疲劳寿命降低。

碳化硼陶瓷自润滑研究现状

摘要:碳化硼(B4C)陶瓷的自润滑对其摩擦学性能具有重要影响,但缺乏这方面的系统性综述介绍。碳化硼具有高的硬度(维氏硬度为36 GPa),因此碳化硼陶瓷是一种应用于耐磨元件的潜在候选材料。然而,碳化硼陶瓷的摩擦因数较高,增加了摩擦系统的能耗,限制了其广泛应用。自润滑是一种可避免外部润滑剂造成污染的方法,揭示碳化硼陶瓷自润滑的机理可为解决碳化硼陶瓷摩擦因数高的问题提供可行参考方案。目前碳化硼陶瓷自润滑的方式主要有预氧化、添加固体润滑剂、构建表面浮雕结构三种。预氧化是将碳化硼陶瓷预先在空气环境中进行高温下氧化处理,使其表面生成氧化层;添加固体润滑剂是将具有层状晶体结构的材料添加到碳化硼陶瓷基体中,在滑动过程中固体润滑剂从碳化硼陶瓷基体中脱落,从而在碳化硼陶瓷的磨损面上形成一层外部润滑层;构建表面浮雕结构是在碳化硼陶瓷基体中引入硬度相对较低的第二相,利用两相晶粒的硬度差,在滑动过程中原位生成凹凸的表面形貌。这些自润滑方法虽然存在技术上的局限,但仍可在一定工况下实现碳化硼陶瓷的自润滑,减小摩擦副的摩擦因数,降低摩擦系统的能耗。总结近年来碳化硼陶瓷自润滑的相关研究进展,并对碳化硼陶瓷自润滑未来的研究方向进行展望,研究结果填补了碳化硼陶瓷自润滑领域目前缺少综述文章来引领的空白,可为碳化硼陶瓷自润滑的设计、研究及应用提供有益的指导。

极地航行船舶防覆冰涂层研究进展

摘要:两极地区是未来重要的能源和资源基地。然而,极地长年低温多冰,极大限制了我国对两极地区的科学考察、商业航运和能源开发进程。因此,发展长效稳定的防覆冰技术是推进极地发展战略的关键。系统阐明了船舶在极地航行过程中面临的结冰困境,分析了船舶积冰的类型,总结了目前解决船舶覆冰问题的多种防除冰技术及发展现状,包括主动防除冰技术(机械除冰、超声导波除冰、加热除冰、化学熔融除冰等)和被动防覆冰涂层技术(气体润滑防覆冰涂层、液体润滑防覆冰涂层、“类液体”润滑防覆冰涂层、界面可控断裂防覆冰涂层等),同时对各技术在极地船舶防冰应用中的优缺点和可行性进行了深入分析。展望了船舶装备对特种防冰涂层的关键需求,提出主、被动协同除冰技术是实现极地船舶防覆冰的重要策略。

喷丸强化对车辆传动齿轮裂纹扩展影响的研究综述

摘要:疲劳断裂是重载车辆传动齿轮的主要失效形式之一,齿轮底部疲劳裂纹的扩展将缩短车辆传动系统的服役寿命,严重时会导致车辆发生安全事故。延缓裂纹扩展的主要方法是在传动齿轮的表面引入一定大小的残余压应力。喷丸技术是一种冷加工表面强化处理工艺,该技术利用高速弹丸冲击材料表面,使零件表层产生塑性应变的同时,在表面和内部引入残余压应力,从而使裂纹闭合的能力得到强化,达到延缓裂纹扩展的强化效果。为了更好地揭示喷丸引入的残余压应力对疲劳裂纹扩展的影响,首先综述了传动齿轮表面疲劳裂纹产生的原因以及疲劳裂纹的扩展行为对重载车辆服役的影响。从强度因子、J积分以及裂纹闭合效应出发,介绍了传动齿轮表面疲劳裂纹扩展的理论以及残余压应力与疲劳裂纹扩展速率之间的关系。其次概述了目前国内外常用的新型有益于将残余拉应力转化为残余压应力的微粒子喷丸、激光喷丸、超声喷丸方法,并与传统机械喷丸技术相比较,阐述了新型喷丸表面强化技术的优缺点。此外,从数值模拟和试验结果两方面,论述了喷丸速度、喷丸角度、弹丸直径、弹丸材质和覆盖率5个工艺参数对在传动齿轮表面引入残余压应力的改善影响。最后对喷丸强化技术在传动齿轮上的多目标参数优化以及多尺度残余压应力与疲劳性能进行了展望,并结合重载车辆的使用需求,强调需要创新设计一种效率高、价格低、适用性广的喷丸技术,以进一步推动喷丸强化在延缓疲劳裂纹扩展方面的持续发展。

镁基复合材料增材制造技术研究进展

摘要:镁基复合材料通过基体与增强体的协同配合,克服了传统镁合金绝对强度和刚度较低、承载能力较差的难题,而增材制造技术的强成形能力、高制备精度、短制备周期为定制复杂结构且组织均匀的镁基复合材料提供可能。因此,本文从镁基复合材料的组成出发,简单介绍传统制备方式后,归纳梳理了镁基复合材料增材制造技术的研究进展,总结不同制造过程中工艺参数对成形件组织和性能的影响规律,最后在分析所存在的问题和挑战的基础上,对镁基复合材料增材制造技术未来的研究方向进行聚焦和展望。

铝合金阳极氧化方法及成膜机理的研究进展

摘要:对铝合金阳极氧化的发展现状及趋势进行了总结和展望。首先,介绍了阳极氧化工艺的类型,并着重阐述了最常用的酸性阳极氧化以及碱性阳极氧化的特点。随后,概括了阳极氧化膜生长机理的研究进展,包括氧化膜的生长过程及提出的相关理论。此外,对碱性阳极氧化的研究现状进行了归纳,并简要介绍了其与酸性阳极氧化在氧化膜结构特点及生长机理方面的异同。最后,针对当前阳极氧化技术存在的问题和面临的挑战,对其未来的发展趋势做了展望,并指出了阳极氧化技术的发展方向。

生物可降解聚酯/生物陶瓷3D打印骨组织工程支架研究进展

摘要 :移植骨植入物是目前治疗骨缺损的公认有效手段之一。生物可降解聚酯/生物陶瓷复合材料结合了生物可降解聚酯的良好力学性能、可降解性能和生物陶瓷的成骨活性,为骨植入物材料提供了新的选择。骨组织工程通过模拟骨骼微环境,加速骨缺损修复。将生物可降解聚酯/生物陶瓷复合材料制备成骨组织工程支架,能进一步加快骨修复进程。3D 打印技术的引入能使生物可降解聚酯/生物陶瓷骨组织工程支架的制备过程精确、可重复且具备高自由度,展现出了良好的发展前景。本文阐述了骨组织工程支架应具备的各项性能,总结了近年来国内外学者对生物可降解聚酯/生物陶瓷骨组织工程支架上述性能的改善策略,并展望未来该研究领域的发展方向。

航空高锁紧固件/抽芯铆钉代际研究综述

摘要:随着现代航空技术的发展,大量新型材料被用于飞机结构,导致飞机装配工艺发生变革。新型紧固件被广泛应用于飞机制造中,其中最具代表性的就是高锁紧固件和抽芯铆钉的大量使用。本文分析了国外高锁紧固件及抽芯铆钉的代际发展技术路线,总结提炼了国外先进型号需求与技术开发研发模式、迭代逻辑,并对未来国产高锁紧固件及抽芯铆钉发展进行了展望。

金属材料表面纳米化研究与进展

摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3 种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。