基于量子点@有序介孔复合材料的Micro-LED色转换特性

摘要:量子点(Quantum dots)由于具有优异的光电特性,广泛应用于发光与显示、太阳能电池、光催化等领域,它的发现和合成获得了2023年诺贝尔化学奖。采用量子点色转换的Micro-LED 全彩化显示技术无需巨量转移,有望实现大规模量产,然而,量子点在高强度Micro-LED 出光激发下的性能和寿命仍存在局限。基于此,本文研究了基于量子点@有序介孔(QDs@SBA-15)复合材料的Micro-LED 色转换技术及其特性,有序介孔分子筛载体独特的孔道结构不仅能够有效提升Micro-LED色转换和光提取效率,且致密的有序介孔材料也一定程度上保障了量子点的稳定性。首先,通过时域有限差分方法(FDTD)建立了Micro-LED 仿真模型,探究量子点粒径和有序介孔材料的孔径对光提取效率的影响;基于仿真结果指导,进一步采用物理共混法制备了QDs@SBA-15复合材料,通过透射光谱、荧光激发光谱、紫外-可见光吸收谱等手段对其进行表征并确定浓度配比;最后,将该复合材料与聚二甲基硅氧烷(PDMS)混合固化成膜,并研究了其光致发光性能。实验结果发现,量子点粒径和介孔材料孔径的匹配度以及量子点和有序介孔材料的比例浓度是影响QDs@SBA-15复合材料发光效率及Micro-LED 色转换性能的关键因素;通过优化,所得复合材料可获得优异的发光性能以及良好的环境稳定性,相比于纯量子点色转换层,复合材料的光提取效率提升了81.73%,复合材料的环境稳定性提升了14.33%,以Micro-LED 作为蓝光光源组成的三基色发光器件工作色域达到了104.52% NTSC。本研究为量子点色转换Micro-LED显示技术提供了理论指导,为实现Micro-LED全彩化开辟了新路径。

新型重力储能的原理效率及其选材选址分析

摘要:近年来,我国把非化石能源放在能源发展优先位置,坚持绿色发展导向,优先发展可再生能源。随着信息化时代的发展,我国工业用电量飞速增长,在这样的背景下,单一使用绿色能源作为电力的供给端,难以稳定持续地满足高峰期和低谷期的电力需求。电力储能技术是目前解决这一矛盾的重要手段,其中重力储能技术由于其绿色环保、能量转化效率高、前期成本低、对地形水源要求低等优点,已成为新型储能方式的重要研究方向。目前已有的重力储能形式有三种,包括塔吊形式、依托山体形式、依托废弃矿井形式等;重力储能技术在国内仍处于起步阶段,很多的技术和理论研究尚不完善,如重力储能系统的原理及安全环保问题、能量转换效率问题、电站选址问题、重块选材问题、适用性问题等。本文基于国内外的储能环境,对三种重力储能形式的原理及工作模式进行了分析。在此基础上,将三种储能模式的效率等参数进行了对比分析,最后从材料强度、使用寿命和地层稳定性等角度出发,针对重力储能系统的选材及电站选址提出了考虑因素及建议,为我国重力储能领域提供了理论支撑,填补了储能技术在储能原理及选材选址方面的空白。

基于荧光方法的循环肿瘤细胞检测研究进展

摘要:循环肿瘤细胞(Circulating tumor cells,CTCs)是指从恶性肿瘤的原发或转移部位脱落的细胞,通过血液循环到达全身。体内CTCs的存在可以反映肿瘤的发生与发展,对肿瘤的诊断和预后至关重要。然而,实现高纯度捕获和捕获后CTCs灭活阻断仍然面临许多挑战。目前开发的用于实现选择性分离CTCs的方案中,荧光方法由于具有高灵敏度、高分辨率、操作简便等特点,在无创检测和快速检测方面具有重要的应用前景。与以往的CTCs研究综述相比,本文详细介绍了CTCs从体外捕获到体内捕获再到下游分析的全过程,并对CTCs的完整诊疗过程进行了系统和详细的总结,为当前的研究提供了新思路,这对于实现早期循环肿瘤细胞的诊断与治疗具有较重要意义。

微晶氧化铝在薄壁陶瓷封装外壳上的应用

摘要:氧化铝陶瓷封装外壳的薄壁化有利于提升散热能力并降低外壳重量,但薄壁化在实际应用中存在可靠性隐患,尤其是在航空航天等严苛工况条件下.普遍认为氧化铝的强度和气密性是解决薄壁陶瓷封装外壳可靠性难题的关键,为解决这个难题,自主研发了微晶氧化铝陶瓷,并对陶瓷的抗弯强度和气密性进行了测试,以此设计为依据,采用微晶氧化铝制备出了外形尺寸1.6mm×1.2mm、壁厚0.15mm 的薄壁陶瓷封装外壳,可靠性验证合格,满足了新型电子器件的应用需求.

水下无人航行器发电及储能技术研究

摘要:自水下无人航行器出现以来,关于其发电和储能系统的研究就从未停止。对适合长期部署的自供电水下无人航行器的需求一直在增长,需进一步研究小规模海洋梯度能源系统。本文综述了利用海洋热能(海水温差、相变材料和热电发生器)和海洋环境能(风能、太阳能和波浪能)的发电技术,总结其优缺点。同时,介绍目前及未来用于水下无人航行器的储能电池,包括锂电池、燃料电池、半燃料电池等。最后,对水下无人航行器电池的未来发展方向进行讨论,为其发电及储能技术发展提供一定参考。

稀土激活的荧光热增强材料研究进展

摘要:自从尺寸依赖的上转换荧光热增强现象在稀土激活的纳米荧光材料中被发现以来,开发具有显著荧光热增强效应的稀土荧光材料俨然成为了一个研究热点。近期的探索发现荧光热增强效应在非纳米尺度稀土荧光材料体系以及非上转换发光过程中均可实现,这进一步拓展了这一有趣光学现象的应用场景。本文总结和归纳了稀土激活荧光热增强材料的最新研究进展,概述了所提出的几类机理以及稀土荧光热增强材料的潜在应用场景,并展望了该类材料的研究发展方向。

工程视野下的高性能碳纤维材料发展现状分析

摘 要: 高性能碳纤维物化性能优越,是航空航天等重大工程急需的关键材料,属于国家战略性资源。因国际封锁,以及国内生产水平有限,目前尚无法完全满足市场和战略性需求。介绍了高性能碳纤维的发展历程和现状,并基于工程科学理论知识,分析了高性能碳纤维材料的制造流程,梳理了全流程中的“卡脖子”问题,对其发展面临的一系列问题进行了探讨。认为对于类似高性能碳纤维这样的重大工程中的关键材料,应采用工程思维对其制造的全流程进行流程工程学研究,通过提升关键材料制造水平辐射带动相关基础学科发展和机械制造自动化、智能化升级。

单晶钙钛矿太阳能电池研究进展

摘要:单晶半导体(如硅、锗和砷化镓)在太阳能电池领域展现的光电转换效率要普遍优于多晶薄膜。然而,基于ABX3 新型有机-无机杂化金属卤化物钙钛矿材料构建的第三代太阳能电池中,其>26% 的最高认证效率是基于多晶薄膜实现的。目前,单晶钙钛矿太阳能电池最高效率约为24%,且相关研究较少。多晶钙钛矿薄膜存在着高密度的固有结构缺陷(如晶界、空位缺陷、杂质缺陷、反位缺陷等),会导致太阳能电池器件稳定性弱和严重迟滞效应等问题。相比之下,钙钛矿单晶具有无晶界、低缺陷密度、长载流子寿命和扩散距离等优势,这些特性使得钙钛矿单晶成为高性能光电子器件的理想优选材料。本综述简述钙钛矿单晶太阳能电池的基本器件结构,系统综述不同组分构成的钙钛矿单晶材料的优势/劣势,同时探讨不同单晶钙钛矿材料的制备/生长方法,细致分析其最新的研究进展和关键攻关方向,重点强调单晶钙钛矿材料组分、器件结构、生长工艺与器件性能之间的关系。希望本综述能为促进研究人员开发高效与高稳定钙钛矿单晶太阳能电池提供借鉴。