全球光芯片领域发展态势分析

摘要:光芯片是未来新一代信息产业的基础设施和核心支撑。本文聚焦光芯片领域,采用“方向—定位—路径”的分析思路,通过产业环境、产业现状、专利态势和布局分析,厘清光芯片研发与产业化发展基础和条件,基于调研和专家咨询,把握未来技术和产业化前瞻性布局,找准未来发展方向。在此基础上,本文剖析我国光芯片发展存在的机遇及可能面临的风险挑战,提出相应的知识产权发展建议:1)梯次布局谋划未来产业发展,在高速率光芯片、车用激光雷达芯片、硅光电子芯片和VCSEL激光器芯片等当前热门应用领域强链、补链,突破关键技术,在光计算、光量子等未来前瞻性应用领域突破技术瓶颈,积极引导产业布局;2)构建覆盖创新全链条全周期的光芯片产业知识产权服务平台;3)加强光芯片领域海外专利布局;4)引导光芯片创新主体构建多维度知识产权保护策略。

水系锌离子电池电解液的溶剂化结构调控策略

摘要:水系锌离子电池(AZIBs)具有成本低、安全性高和金属锌资源丰富等特点, 近年来受到学术界和工业界的广泛重视. 但是, AZIBs在循环过程中不可避免地存在枝晶生长、析氢反应和腐蚀问题. 作为AZIBs的重要组成部分, 电解液结构的优化对于增强AZIBs的性能至关重要. 本文系统地分析了AZIBs的电解液结构模型, 将电解液结构分为溶剂化结构、氢键网络和电解液/锌阳极界面三部分, 并且主要针对电解液中的溶剂化结构, 从电解液浓度调控、添加剂工程和固态化设计等方面总结了电解液溶剂化结构调控策略. 本文为今后进一步研究和提升AZIBs的综合性能提供了方向性指引.

疏水型催化剂在有机合成反应中的应用

摘要:在许多反应中通常不可避免地产生水或需要水, 水在反应中起着溶剂、反应物、副产物、催化剂或质子转移剂的作用, 在多相催化体系中可作为溶剂改善底物的亲水性, 进而促进反应的进行, 但在催化合成领域普遍认为水分子是一种破坏性因素, 会破坏金属活性位点, 导致催化剂性能下降甚至失活. 传统金属催化剂大多具有“水不稳定性”,因此疏水催化剂或疏水微环境的构建及性能探究成为了研究热点. 以疏水催化剂为核心, 详细总结了以Pt、Pd、Fe、Co、Cu、Au、Ti、Rh 等金属为活性位点设计并制备疏水催化剂的研究进展, 对疏水催化剂在氧化、还原、偶联及CO2转化等有机反应中的应用进行了归纳和分析, 阐释了针对特定反应体系构建具有适宜“亲疏水效应”催化剂, 并实现目标分子高效合成面临的挑战, 并对该领域未来的发展趋势进行了展望.

晶格结构可打印性研究现状

摘要:晶格结构因其复杂多变的结构呈现出多种优异的电、磁、声学、热学和机械性能,在航空、航天、汽车、建筑和生物医学行业显示出较大的市场前景,而晶格结构的制造难度大是制约其快速发展的一大难题,增材制造技术为晶格结构制造带来了便利。本文主要总结分析了晶格结构的设计、打印原材料和打印过程中参数对结构可打印性的影响,分析得出晶格结构的可打印性受晶格类型、相对密度、支柱倾斜度、粉末类型和打印参数的影响,最后提出了提升晶格可打印性的未来发展方向。

表面织构电解加工技术研究进展

摘要:表面织构在能源、光学、电子、信息技术、生物和摩擦学等领域具有重要应用,其加工工艺是制造技术研究的重要内容。由于所加工表面织构具有无毛刺、翻边等优点,电解加工成为表面织构的重要制造技术方法和技术研究热点,故详细介绍了五种典型表面织构电解加工技术在方法创新、材料去除机制、加工过程建模及加工工艺等方面的研究进展,给出了电解加工表面织构的典型结构和材料,指出提高加工效率和加工自动化程度是未来表面织构电解加工技术的发展趋势。

人工智能器件宇航应用面临的挑战与应对措施

摘要:人工智能器件是提供实现系统功能的微小型化器件,是实现空间环境感知、自主判断、自主任务规划等的硬件载体和基础。此类新型元器件在宇航应用前,仍然面临成熟度、可靠性、抗辐射能力、宇航适用性等诸多挑战。本文从分析人工智能器件国内外发展现状出发,分析人工智能器件宇航应用面临的挑战与应对措施,给出典型人工智能器件质量保证案例,并归纳和总结后续人工智能器件宇航应用的相关建议。

非对称银纳米柱的光学特性及制备

摘要:提出了一种新颖的非对称银纳米柱结构,并采用时域有限差分(FDTD)法对其激发的表面等离子体共振(SPR)模式进行了数值模拟。通过磁控溅射和离子束刻蚀技术,成功制备了该单层非对称银纳米柱结构,并通过透射光谱分析其光学特性。实验结果表明,该结构对环境折射率变化敏感,在生化物质的现场快速检测中显示出巨大潜力。基于这一发现,进一步设计并模拟了双层非对称银纳米柱结构,确认了其对偏振光的高度敏感性。这些研究成果为开发新型生物化学传感器提供了重要的理论和实验基础。

有机太阳能电池溶剂退火表征技术研究进展

摘要:有机太阳能电池(organic solar cells, OSCs)因其成本低及其轻量化和可调性等显著优势成为一项重要的绿色能源技术. OSCs活性层的形貌调节和结晶度关乎器件性能的优劣. 因此, 人们提出了各种优化形貌和调节结晶度的后处理策略, 如热退火(TA)、溶剂退火(SVA)、添加剂等. 但是添加剂较差的相容性会影响器件性能. TA和SVA都作为目前流行的后处理策略, 热退火是通过加热给分子提供驱动力, 进而对活性层表面形貌进行优化.而与热退火不同的是, 溶剂蒸气退火能够渗透进薄膜内部为分子运动提供自由体积, 因其操作简单和调控手段灵活等优势而引起了人们的兴趣. 然而, 由于溶剂蒸气对OSCs活性层的影响机制还不明确, 这抑制了SVA的发展. 因此, 本文总结了目前被广泛应用的几种动力学表征技术和装置, 包括拉曼荧光光谱(PL)、紫外-可见光吸收光谱(UV-vis)、掠入射广角X射线散射(GIWAXS)和掠入射小角X射线散射(GISAXS)等, 研究人员可以通过这一综述全面了解SVA的动态过程, 从而有可能提高器件性能. 最后, 展望了SVA表征技术在OSCs中面临的挑战和未来发展方向.