粉末轧制大尺寸多孔钛板制备工艺研究

摘要: 以氢化脱氢钛粉为原料,采用粉末轧制和真空烧结技术,通过对喂料和烧结制备工艺的优化改进,制备出了过滤性能均匀,且宽度>400 mm的大尺寸多孔钛板。实验结果表明: 限制式喂粉方式可实现定量喂料,能保证喂料的均匀性; 加压限位烧结可以有效防止生料坯在高温烧结过程中发生翘曲变形; 轧制多孔钛板过滤性能良好,其密度为2.85g /cm3 ,最大孔径为37μm,透气度为150 m3 /( h·kPa·m2) ,同时对于5μm以上的气体粉尘过滤效率>99.99%,满足了过滤行业对大尺寸多孔钛板的需求。

汽车雨刮器用钢片热处理研究

摘要:对雨刮器用65Mn,钢片油淬火回火热处理工艺进行研究。介绍了65Mn钢化学成分以及对雨刮器用钢片的技术要求,给出雨刮器用65Mn扁钢丝工艺流程。通过试验得出最佳工艺参数:奥氏体化温度840℃,回火温度450℃,获得的产品硬度为51.2HRC,平整度(L=500mm)不大于0.1mm,产品表面氧化均匀,性能符合客户要求。

主缆缠绕用精密热镀锌异形钢丝研制

摘要: 为提高大桥主缆防腐效果,开发研制了S形精密热镀锌钢丝。选用可加工性强的低碳钢盘条,对酸洗、开坯、连续冷轧、热镀、精整等工序进行优化,完成产品尺寸精度和表面质量的控制。试验结果满足预期的性能指标要求: S形热镀锌钢丝抗拉强度650~700MPa,扭转20次以上,弯曲8~12次,锌层面质量300~330g /m2 ,缠绕试验8圈不断,钢丝表面锌镀层平整光滑,缠丝应用良好。

钛基复合材料板材轧制研究进展

摘要: 钛基复合材料中的增强相极大增加了其热加工难度,导致大变形或大尺寸高性能钛基复合材料板材的制备困难。从钛基复合材料板材发展现状出发,围绕其热轧制技术,分析了轧制温度、变形量及轧后热处理工艺对板材微观组织演变和力学性能的影响规律,重点分析了轧制过程和热处理过程增强相与基体组织之间的相互作用。最后指出当前钛基复合材料板材轧制研究存在的不足及未来的发展趋势。

碳化硅纳米线增强钛基复合材料的制备与性能研究

摘要: 采用球磨法将Ti60合金粉末与碳化硅纳米线(SiCnw)混合,通过放电等离子活化烧结工艺制备SiCnw/Ti60复合材料。利用扫描电子显微镜、X射线衍射仪和万能力学试验机研究复合材料的组织形貌、物相结构和力学性能。结果表明,在Ti60合金中添加SiCnw后,基体晶粒尺寸显著减小,当SiCnw添加量为0.1% (质量分数) 时,SiCnw/Ti60复合材料的晶粒尺寸较Ti60 合金下降42%,抗拉强度提高2.7%,为1037MPa。SiCnw在晶界处的均匀分布可起到钉扎效应,在拉伸过程中SiCnw承担了基体间的载荷传递,从而提高了SiCnw/Ti60复合材料的拉伸强度。

医用多孔钛合金表面改性技术研究进展

摘要:多孔钛合金拥有良好的力学性能,能够降低“应力屏蔽”效应,促进与组织的结合,但其功能化方面还存在不足。表面改性能够通过改造材料表面形貌或在材料表面负载功能成分等形式,赋予材料良好的成骨、抗菌及耐腐蚀、耐磨性等功能特性。区别于钛板/棒等致密钛材,多孔钛具有复杂的内部结构,因而,其改性多在流体(液体、气体)介质中进行以实现良好的包覆性。按照表面改性原理及作用成分性质分类,重点介绍了传统与新型医用多孔钛合金表面改性方法及效果,总结分析了不同方法间的优缺点及影响因素等,以期为医用多孔钛合金表面改性提供指导。

用于软骨下骨修复的镁基支架

摘要:骨关节炎(osteoarthritis,OA)作为一种可以导致残疾的退行性疾病,常累及软骨下骨。受损的关节软骨和软骨下骨很难自愈,用于功能修复的组织工程支架是一种有前途的治疗方法。近年来,镁合金因其良好的机械和生物学性能被视为可降解多孔支架有希望的候选者。然而,目前对于适用于软骨下骨缺损修复的镁基支架的结构设计和优化方案还没有定论。归纳了镁合金用于骨软骨支架的研究进展,包括多孔支架的制造方法;添加合金元素和表面改性的优化策略;参数化与非参数化的结构设计;镁基支架的机械、降解和生物学性能及其影响因素。讨论了未来研究的潜在方向。旨在为多孔镁基支架的开发和临床应用提供参考。

铋基纳米材料在肿瘤诊治和抗菌中的应用进展

摘要:随着纳米技术的快速发展,纳米材料作为新型生物材料在生物医学领域表现出独特的优势,受到研究人员的广泛关注。铋基纳米材料因其良好的生物相容性和优异的光学等物理化学特性,在肿瘤诊治和抗菌等生物医学领域的应用已被广泛研究和报道,并展现出广阔的应用前景。简要综述了生物医用铋基纳米材料在计算机断层扫描成像、光声成像等生物成像和光动力治疗、放射治疗、光热治疗等肿瘤治疗以及抗菌中的研究进展,希望为铋基纳米材料在生物医学领域中的应用提供帮助。

无机金属异质结半导体在肿瘤治疗中的应用研究

摘要:随着对半导体催化机制的不断研究,发现半导体材料在光/声刺激下会发生催化反应,从而产生活性氧。因此,近年来半导体材料被广泛研究用于肿瘤治疗。基于不同激发源,用半导体材料催化治疗主要分为光催化治疗和声催化治疗,其中异质结半导体材料与单纯的半导体材料相比,因其特殊的电子转移方式,在肿瘤催化治疗中表现出更好的疗效。通过分析异质结材料的催化机制,将近年来设计合成的多种无机金属异质结分为4 类,同时详细讨论了不同异质结材料在光/声催化治疗领域的研究和发展。希望从异质结催化增强的机制出发,为用于高效肿瘤治疗无机金属异质结材料的设计提供新的思路。