树脂基碳纤维复合材料在轨道车辆车体上的应用及制造工艺概述

摘要:以韩国摆式列车车体为例初步介绍了树脂基复合材料车体制造方法,并详细阐述了树脂基碳纤维复合材料车体制造工艺,包括预浸料制造工艺、热压罐成型工艺、真空辅助树脂灌注成型工艺、自动铺放工艺、拉挤成型工艺和缠绕成型工艺的具体内容和主要参数。研究结果可为树脂基碳纤维复合材料在轨道交通车辆车体上的应用提供参考。

2025年全球采矿及金属行业十大业务风险与机遇研究

► 资本当属头号风险,矿企要在企业增长与恪守资本纪律(Capital Discipline)之间取得平衡,以满足市场对能源转型矿物不断飙升的需求。► 矿企进一步优化环境管理,采取更广泛的环境、社会与治理(ESG) 管理方式,重点关注废弃物、水资源和“自然向好”愿景。► 受需求飙升、勘探成本高企和勘探发现不足等因素影响,资源和储量枯竭首次上榜十大风险,排名高居第四位。

基于无机填料复合薄膜的摩擦纳米发电机研究进展

摘要: 摩擦纳米发电机(Triboelectric Nanogenerator, TENG)是一种将微小机械能转化为电能并加以收集利用的绿色能源器件, 具有活性材料种类广泛、器件结构简单以及易于集成等特点。较低的输出功率密度是目前阻碍其实际应用的主要因素之一。如何通过材料组分设计与制备提高其输出功率密度及能量转化效率, 是目前该领域研究者关注的热点问题。在摩擦纳米发电机常用的活性材料-高分子聚合物中引入功能性填料是一种简便且高效的改性方法,不仅能够对薄膜摩擦电性能进行优化、提高输出性能, 还能够赋予其新功能, 可谓一举多得。因此, 此类复合薄膜已广泛应用于TENG 领域, 例如TiO2、SiO2、BaTiO3、ZnSnO3、MoS2、石墨烯、二维黑磷等无机填料对复合材料的性能均有不同程度的优化, TENG 的输出功率密度最高提升了数十倍。本文结合国内外研究现状, 按照填料对基体材料表面性能以及电学性能优化作用两个方面进行阐述, 综述了复合材料薄膜在摩擦纳米发电机中的研究进展,并展望了未来复合材料用于提高TENG 输出性能研究的发展方向。

“双碳”目标下中国工业部门氢能需求量测算及供给结构路径优化

摘要:在推进“双碳”目标实现的过程中,中国的能源系统迫切需要加快转型。工业部门由于其特有的对传统化石能源燃料和原料的依赖,发展过程中存在大量难减排的行业,氢能以来源丰富、绿色低碳、应用广泛等优势为工业部门提供了一条切实可行的深度脱碳路线。为此,构建了3 阶段模型框架,测算了中国工业部门重点行业氢能需求量,最后探讨了氢能供给结构的优化路径。研究结果显示:①工业部门用氢主要集中于钢铁、水泥、甲醇及合成氨等难以通过电气化实现脱碳的关键行业;②从需求侧来看,在参考情景、低渗透情景及高渗透情景下,2060 年工业部门的氢能需求量分别为2 509.1×104 t、5 037.8×104 t、6 865.7×104 t ;③从供给侧来看,氢能供给结构将从以化石能源为主的灰氢逐步过渡到以可再生能源为主的绿氢;④随着绿氢的应用比例增高,预计在2020—2060年期间,氢能可累计替代煤炭41.7×108 t 标准煤、石油11.3×108 t 标准煤,累计碳减排贡献比例有望达16.7%。结论认为,中国工业部门减少化石能源需求量和碳排放量需要重点依托绿氢产业的高质量发展。

大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展

摘要: 有机-无机杂化钙钛矿太阳能电池具有制备成本低、光电转换效率(Photoelectric Conversion Efficiency, PCE)高的巨大优势, 显示出广阔的商业化前景。经过十几年的深入研究, 钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的实验室器件(<1 cm2)、大面积器件(1~10 cm2)、迷你模组级器件(10~800 cm2)和模组级器件(>800 cm2)的最高认证PCE已分别提升至26.10%、24.35%、22.40%和18.60%。随着PSCs 面积扩大, PCE 急剧下降, 这主要是因为制备方法的局限性,难以获得高质量的大面积钙钛矿薄膜。实验室器件常采用的旋涂法难以应用到实际生产中, 目前大面积钙钛矿薄膜的制备方法主要有刮涂法和狭缝涂布法, 但其存在薄膜成核结晶过程难以精确控制等问题。本文从大面积有机–无机杂化钙钛矿薄膜的制备方法入手, 介绍了大面积钙钛矿层成膜机制及薄膜质量提升策略。最后, 对未来高PCE、高稳定性的大面积PSCs 的制备技术和应用进行了展望, 旨在对高性能的大面积PSCs 研究提供有益参考。

高能量长续航无人机电池的开发及制备

摘要:以高镍三元单晶和多晶颗粒为正极材料,制备出了3种体系的正极极片。负极材料采用高首效和低膨胀的硅氧颗粒,并制备成负极极片。通过软包电池叠片和注液工艺,制备成单体电芯。采用3种不同的化成工艺对单体电池进行激活,经过高温加压和阶梯式充电电流方式化成的电池,循环500 周后容量保持率高达95.3%。最终制备的单体电池在常温2 C 放电条件下表现出优异的电化学性能,放电容量为23 Ah,能量密度达到269 Wh/kg。在常温1 C/2 C循环1000次后,电池容量保持率达到88.3%。单体电池在高温柜放置7天后,电池的容量保持率达到95.7%,容量恢复率为97.4%。该电池还具有优异的放电倍率性能,以1 C放电容量为基准值,10 C的放电容量比达到了83.3%。按照国家标准,电池还顺利通过了严格的加热和外短路安全要求测试。此外,通过选用一致性更高的6块单体电池以串联的方式进行组装,成功制备出了无人机电池组。该电池组尺寸为81 mm×183 mm×71 mm,重量为1902 g,2 C放电能量密度为240 Wh/kg,可满足不同倍率下放电,使之能够在多种复杂工作条件下为无人机提供可靠的动力支持。

国内外钢轨快速打磨技术对比与创新应用

摘要:钢轨快速打磨采用被动式打磨技术,最先在德国投入工程化应用,其应用有较为成熟的经验。钢轨快速打磨技术引入国内十年以来,得到广泛运用和推广,适应国内高速铁路的快速打磨技术管理体系仍在不断完善。对国内外钢轨快速打磨技术的发展及应用进行对比和分析,以更好地促进快速打磨技术在国内的科学运用,完善快速打磨技术的创新和发展。

车用超高速永磁电机驱动控制技术综述

摘要:超高速永磁电机具有体积小、效率和功率密度高等优点,广泛应用于燃料电池空压机和电动涡轮增压器等车用领域。小电感和高基频等特性,使其驱动控制比常速永磁电机难度更大。本文从电路拓扑、电压调制策略匹配和无位置传感器控制3个方面详细论述车用超高速永磁电机驱动控制技术的研究现状,总结各类技术的研究热点,通过优缺点对比,给出了评价。最后展望了未来发展趋势。

超高温氧化物陶瓷激光增材制造及组织性能调控研究进展

摘要: 氧化物陶瓷具有高硬度、高强度以及优异的抗氧化和抗腐蚀性能, 是高性能发动机极端高温、燃气腐蚀、氧化服役环境用重要的候选高温结构材料, 在航空航天用高端装备领域具有广阔的应用前景。与传统陶瓷制备技术相比, 激光增材制造技术能够一步实现从原材料粉末到高性能结构件的一体化高致密成型, 具有柔性度好、成型效率高的特点, 可以快速制备高性能、高精度、大尺寸复杂结构部件。近年来, 基于液固相变发展的熔体生长氧化物陶瓷激光增材制造技术已成为高温结构材料制备技术领域的前沿研究热点之一。本文首先概述了激光增材制造技术的基本原理, 着重介绍了选区激光熔化与激光定向能量沉积两种典型激光增材制造技术的工艺特点。在此基础上,重点阐述了利用激光增材制造技术制备不同氧化物陶瓷的组织特征及工艺参数对微观组织的影响规律, 并总结比较了不同体系氧化物陶瓷力学性能的差异。最后, 对该领域存在的问题进行了梳理和分析, 并对未来的发展趋势进行了展望。