钒合金抗高温氧化腐蚀研究进展

摘要:以V−(4−5)Cr−(4−5)Ti 合金为代表的钒合金具有高温性能优异、抗辐照肿胀性能好、中子辐照活化性低等诸多优点,被视为先进核聚变反应堆最有潜力的候选包层结构材料之一. 然而,钒合金在较高温度下的氧化腐蚀及吸氧脆化问题仍是目前制约其实际应用和长寿命服役的重要因素. 因此,提升钒合金的抗高温氧化腐蚀性能,对于提高其服役温度、延长其服役寿命以及拓宽其应用领域均具有重要意义. 本文综述了国内外有关提升钒合金抗高温氧化腐蚀性能的三种主要方案,即添加抗氧化性元素、应用扩散型涂层和包覆型涂层,并对这些方案的主要特点、应用实例以及存在的问题进行了分析和讨论. 上述三种方案中,包覆型涂层由于可以将钒合金基体和服役环境完全隔离,因而具备更大的应用潜力. 根据钒合金的应用特点,对先进包覆型抗氧化腐蚀涂层的发展趋势和技术需求进行了展望,以期为钒合金抗高温氧化腐蚀研究工作的深入开展提供借鉴.

基于综合智能模型的碳钢大气腐蚀重要变量提取和依赖关系挖掘

摘要:针对碳钢在大气腐蚀过程中影响变量多且作用机制复杂的问题,提出一种基于综合智能模型的重要变量挖掘框架,利用该框架可以挖掘影响碳钢早期大气腐蚀的重要环境变量及其对腐蚀电偶电流产生的影响. 本文通过大气腐蚀监测仪(ACM)收集了我国5个试验站点的大气腐蚀数据,首先,构建了随机森林(RF)、梯度提升回归树(GBRT)和BP神经网络(BPNN)三种机器学习模型;其次,利用多模型集成重要变量选择算法(MEIVS)量化环境变量的重要性并提取影响碳钢早期大气腐蚀的重要环境变量;最后,绘制了环境变量与腐蚀电偶电流的局部依赖曲线(PDP). 仿真结果显示,MEIVS 算法挖掘出的重要环境变量更符合大气腐蚀的先验规律;PDP与MEIVS算法的结论具有很好的一致性,重要环境变量对应的PDP的变化幅度大,且PDP的变化趋势能够反映环境变量对腐蚀电偶电流的影响.

焊接机器人焊缝跟踪方法及路径规划研究

摘要:焊缝自主跟踪是机器人焊接智能化的关键,其精度是评价焊接质量的重要指标。焊接对象或条件的改变对精度的影响最为直接,尤其当焊件表面存在缺陷时会产生较大的跟踪误差。为此,开展焊接机器人焊缝跟踪方法及路径规划研究,提出焊缝跟踪的4步法:1)利用激光传感器扫描坡口,获取轮廓数据。2)接着通过组合滤波算法,运用限幅滤波和高斯滤波处理数据以平滑噪声。3)采用导数法初步定位特征点,通过寻找第1阶和第2导数极值点以定位第1类和第2类特征点;以初步定位获得的特征点为分界点,分段拟合坡口轮廓数据,计算各拟合线段的交点进而得到精确定位的特征点。4)通过传感器位姿标定,确定其相对末端坐标系的位置,借助转换矩阵将传感器检测到的焊缝特征点转化到基座标系下,得到机器人的空间定位点;运用3次样条插值法生成焊枪末端轨迹,并驱动机器人按照预定轨迹运行,进而实现焊缝的有效跟踪。通过实验验证直线与曲线焊缝的跟踪效果,结果表明:初步定位时,跟踪误差约为0.628 mm、0.736 mm,经精确定位后,误差降为0.387 mm、0.429 mm,提升幅度分别超过38.4%、41.7%;且焊枪的抖动现象得到减弱,达到自动焊接误差≤0.5 mm的精度要求,表明了文中所提出跟踪方法的有效性,可为焊缝的高精度跟踪和自动焊接研究提供有益参考。

电容式钛酸锂电池的设计及制备方法

摘要:为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.

低温锂离子电容器研究进展

摘要:锂离子电容器(LIC)采用了双电层电容器(EDLC)正极和锂离子电池(LIB) 负极,因而兼具高能量密度、高功率密度和长循环寿命的优势. LIC在储能过程中正极表面发生电荷的可逆吸脱附,负极体相中存在Li+的反复嵌入/脱嵌,在低温环境下由于电解液的黏度、电导率等物化性质发生很大改变,严重影响了LIC中离子的正常运输和电荷转移,导致无法在低温工况下正常运转,限制了其全天候、宽温域的应用.因此改善LIC的低温性能成为现阶段亟待解决的问题,受到了业界的广泛关注.众多研究表明电极材料和电解液之间的相互作用直接决定LIC低温电荷存储的过程,是解决低温环境下LIC 能量密度和功率密度低的关键环节.本文从电极材料和电解液两个方面综述了国内外LIC低温性能的研究进展,概述了现阶段低温碳基材料的化学改性、表面修饰、离子嵌入以及新型电极材料的研发,并从电解液的锂盐、溶剂、添加剂三部分出发,介绍了低温工况下电解液各组成部分对LIC性能的影响,对不同改进工艺进行了分类与总结,重点讨论了新型低温添加剂在LIC中的应用,最后总结了新一代低温电解液的研究进展并对具有宽温度工况的下一代LIC提供了初步展望.

锌电池中钴基正极材料的应用现状与挑战

摘要:于丰富的矿产资源、超高的理论容量和卓越的安全性,水系锌电池成为下一代储能设备的有力竞争者。作为锌电池理想的正极材料候选者,近年来钴基电极材料因其高输出电压、高理论容量和优异的氧化还原能力(Co2+←→Co3+←→Co4+)而受到越来越多的关注。虽然研究者对应用于锌空气电池的钴基催化剂进行了文献综述,但是主要集中在单一催化方向,缺乏关于钴基电极材料多功能特性的系统总结。本文介绍了钴基正极材料在锌电池中的多功能特性,结合其氧化还原和氧催化两方面能力,从锌钴电池拓展到复合锌钴电池体系。然后,从两种电池体系中的充放电机理出发,详细介绍了当前锌钴电池中钴基材料的优化策略,以及复合锌钴电池中电极/电解液三相界面的设计方案。最后,本文介绍了当前研究的不足,并对未来研究方向进行了展望。

硅基SiC薄膜制备与应用研究进展

摘要:碳化硅(SiC)材料具有极为优良的物理、化学及电学性能,可满足在高温、高腐蚀等极端条件下的应用,碳化硅还是极端工作条件下微机电系统(MEMS)的主要候选材料,成为国际上新材料、微电子和光电子领域研究的热点。同时,碳化硅有与硅同属立方晶系的同质异形体,可与硅工艺技术相结合制备出适应大规模集成电路需要的硅基器件,因此用硅晶片作为衬底制备碳化硅薄膜的工作受到研究人员的特别重视。本文综述了近年来国内外硅基碳化硅薄膜的研究现状,就其制备方法进行了系统的介绍,主要包括各种化学气相沉积(Chemical vapor deposition,CVD)法和物理气相沉积(PPhysical vapor deposition,PVD)法,并归纳了对硅基碳化硅薄膜性能的研究,包括杨氏模量、硬度、薄膜反射率、透射率、发光性能、电阻、压阻、电阻率和电导率等,以及其在微机电系统传感器、生物传感器和太阳能电池等领域的应用,最后对硅基碳化硅薄膜未来的发展进行了展望。