碳纤维增强超高温陶瓷基复合材料研究进展

摘要: 超高温陶瓷(UHTCs) 因在高超声速飞行器热防护领域的巨大应用前景而备受关注,而脆性大、烧结成型困难是制约UHTCs广泛应用的实质问题。将碳纤维与UHTCs复合获得碳纤维增强超高温陶瓷基复合材料(Cf/UHTCs)是克服这一问题的可靠方案。近10年来,我国在Cf/UHTCs工程应用方面获得了重大突破,取得了一系列具有世界先进水平的应用成果。然而,由于Cf/UHTCs制备过程复杂,服役环境苛刻(>2000℃,>5Ma气流冲刷) ,在结构演化、性能机理等方面仍存在一些关键科学问题亟需明确。综述了Cf/UHTCs在基体改性、氧化烧蚀机理、高温力学行为等方面的研究进展,并结合本团队的研究工作对Cf /UHTCs 的研究趋势进行了总结和展望,旨在为进一步推动Cf/UHTCs的研究和发展提供参考。

SiC纳米线研究进展及其应用现状

摘要: 随着SiC纳米线制备技术的日益成熟,其在场发射、光催化、电学和光学材料领域有着广阔的应用前景和发展潜力,也可作为多种结构材料增强体广泛应用于航空航天、核、制动系统等多种工业领域。综述了SiC纳米线的性能及其多种制备方法的研究现状,详细介绍了SiC纳米线作为增强材料应用于陶瓷材料、C基复合材料及SiC基复合材料中的研究进展,讨论了SiC纳米线的作用机制,并展望了其未来发展方向。

铁性智能材料的研究现状和发展趋势

摘要: 铁性智能材料是具有感知温度、力、电、磁等外界环境并产生驱动效应的一类重要功能材料,主要包括形状记忆、磁致伸缩和压电3 大类材料。由于历史原因,形状记忆、磁致伸缩和压电等3类铁性智能材料却被分散在马氏体、铁磁和铁电等几个不同领域独立研究,只能借助各自领域的有限思路进行材料研发,虽取得不少成果但逐渐遭遇到原理性瓶颈。近年来,国际上出现了将3 类铁性智能材料作为一个统一体进行研究的新趋势,文章将结合现代产业和国防技术对形状记忆材料、磁致伸缩材料和压电材料的要求以及遭遇到的瓶颈问题,对铁性智能材料研究现状和发展趋势进行综述,并由此可望提供高性能铁性智能材料的物理新机制。

石墨烯纤维的制备与应用

摘要:石墨烯是一种由碳原子以sp2杂化方式结合形成的单原子层厚度的二维纳米碳材料,具有优异的力学、电学、热学、磁学等性能,是当前研究的热点和焦点。石墨烯纤维是石墨烯纳米片层在一维受限空间的组装体,使得石墨烯在纳米尺度的优异性能遗传到宏观尺度,极大地拓展了石墨烯的应用领域。自2011 年首次制备获得石墨烯纤维以来,至今为止已经开发了以湿法纺丝为代表的多种制备方法,并且石墨烯纤维已经在能量转换、能量存储、传感响应等领域取得了一系列应用。归纳整理了石墨烯纤维的制备方法和应用,同时总结了石墨烯纤维目前存在的问题以及未来发展的展望。

超高导电铜基材料的研究现状与展望

摘要: 超高导电铜是指导电性能优于国际退火铜标准的一类铜材料,其在机械、电子和电力等领域具有广阔的应用前景。综述了超高导电铜的研究现状,介绍了纯铜、铜合金和铜基复合材料3类超高导电铜体系,其中,最有望实现大规格超高导电铜的材料体系是在铜基体中加入碳纳米管或石墨烯等碳纳米材料。随后,指出了现阶段超高导电铜基复合材料制备存在的3个关键问题: 良好的电学接触界面、优化复合材料的构型和实现碳纳米材料良好的结构/本征性能与均匀分散的协同。基于这3个关键问题,介绍了铸造、电解共沉积、化学气相沉积法、粉末冶金法等一系列有望制备超高导电铜基复合材料的方法,并总结了其优缺点。最后,对超高导电铜未来发展趋势进行了展望。

金属材料的石墨烯强韧化

摘要: 石墨烯材料以其优异的本征力学性能,被认为是新一代金属基复合材料中理想的增强体。特别是,由于调控石墨烯内禀缺陷的种类和含量可以较为简便地实现对其本征力学性能的精确“剪裁”,使得石墨烯增强金属基复合材料具有广阔的发展空间。综述了近年来石墨烯增强金属基复合材料制备工艺与结构-性能关系的研究进展,并聚焦于石墨烯/金属之间界面的结构与性能。这不仅是因为在复合材料使役时,外加载荷是通过复合界面传递到石墨烯增强体的( 即“承载效应”) ,也因为随着石墨烯的加入,在复合材料变形过程中石墨烯和金属基体内的位错发生复杂的相互作用,改变或影响了基体的变形机制,导致了额外的强韧化效果。最后,展望了石墨烯增强金属基复合材料的发展趋势,指出需要发展可放大的制备工艺,并深入研究实际使役条件下复合材料的力学行为和性能响应机制。

金属部件送丝增材制造工艺研究现状

摘要:相对比于传统的减法式制造,送丝增材制造是一种新兴的加工制造方法,在复杂的几何图形和贵金属的制造方面具有更好的应用前景。本文通过分析对比,阐述了当前主流的三种送丝增材制造技术的特点及国内外研究现状,着重阐述了工艺参数对成形件精度、组织和力学性能的影响。分析了现阶段送丝增材制造技术存在的问题,最后对送丝增材制造未来的发展方向进行了展望。

粉末高温合金

摘要:高温合金具有良好的抗氧化性、抗腐蚀性能、优异的拉伸、持久、疲劳性能和长期组织稳定性,是为了满足各种高温使用条件下的现代航空航天技术的要求而发展起来的,在先进的航空航天发动机领域显示出强大的生命力。粉末冶金高温合金是采用粉末冶金的方法制备的高温合金,与传统的铸锻高温合金相比,具有组织均匀,无宏观偏析,以及屈服强度高、疲劳性能好等优点,克服常规工艺产生的偏析(不均匀),所使用的预合金化粉末的每个颗粒就是一个“显微钢锭”,合金偏析只能在粉末颗粒的细小范围内发生,能够提高合金的综合性能,并且能减少切削加工量,提高了合金的利用率。特别是随着高温合金成分日趋复杂、零件尺寸不断增大,粉末冶金高温合金显示出更大的优越性。

耐候钢用于光伏支架的耐腐蚀优势

摘要:金属腐蚀给光伏支架带来了巨大的经济损失及安全隐患,在不断的研究过程中,针对钢材防腐,提出了各种各样的防腐方法:保护层法、电化学保护法、外加电流保护、用电镀、热镀、喷镀等;但是这些方法不仅工艺比较繁琐,而且增加生产成本,容易造成环境污染,破坏生态环境。在市场需求及国家政策的推动下,耐候钢成为了首要选择。耐候耐蚀钢,在冶炼工艺中加入Cu、P、Cr、Ni、Mn 等几十种稀有元素,使钢体表面在大气环境下逐渐形成非常致密超薄、牢固的氧化层(钝化层),隔绝了氧气和水分子与钢材内部元素化学反应造成的进一步腐蚀,自身具有很好的耐大气腐蚀能力。大大降低了生产成本以及后期维护成本。

钠离子电池低温电解质的研究进展与挑战

摘要:钠离子电池因资源丰富、成本低廉、安全性高及环境友好等优势,在低速电动汽车、大型储能系统等领域备受关注。电解质作为电池的重要组成部分之一,承担着在正负极间传输离子的作用,对电池的循环寿命、倍率、安全性及自放电等性能具有重要影响。然而,在低温环境下,由于离子电导率下降、电解质与正负极兼容性变差、去溶剂化能升高、电极/电解质界面性质变差等问题,使得钠离子电池难以发挥理想的性能。本文总结了近年来对低温电解质的钠离子溶剂化结构及电极/电解质界面的新认识,并对基于氢键网络破坏、弱溶剂化、快速反应动力学及阴离子干预的低温电解质设计策略进行了系统分析。最后,提出深入理解电解质的钠离子溶剂化结构、电极/ 电解质界面性质与电解质低温性能之间的关系是未来从电解质角度提升钠离子电池低温性能的关键。