基于无颗粒银墨水制备柔性透明导电薄膜

摘要:以酒石酸银作为前驱体,1,2-丙二胺为络合剂,乙醇为溶剂制备无颗粒酒石酸银导电墨水。以丙烯酸乳液为原料制备模板,利用模板法和旋涂工艺法,在PET基材上制备透明导电银网格薄膜。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱仪(FTIR)等方法对制备的导电墨水和透明导电银网格薄膜进行表征。结果表明,该方法实现了银网格完全嵌入在裂纹模板凹槽中,通过调控模板的线宽大小及网孔数量可获得透过率为82%、方阻为28Ω/sq的银网格透明导电薄膜。该导电薄膜的薄膜电阻经过100 次弯曲后没有明显的变化,可以有效克服ITO薄膜柔性差的缺点。

汽车尾气催化剂中铂族金属回收工艺概述

摘要:我国铂族金属资源稀缺,从二次资源中回收铂族金属,对于实现可持续发展和环境保护都具有重要意义。综述了目前从报废汽车尾气净化催化剂中回收铂族金属的研究进展,包括预处理、富集和精炼与分离过程。预处理作用是打开废催化剂的包裹或增大与溶液的接触面积。富集是最回收废催化剂最为关键的步骤,湿法富集过程繁琐,周期较长、废水量较多,回收率不稳定。火法富集,以铁、铅、铜、锍的金属熔炼捕集为主,铅、锍熔炼过程会产生毒性物质,铜价格昂贵,而铁捕集具有经济廉价、且工艺流程短、无污染等特点,是未来处理汽车尾气催化剂的发展方向之一。精练与分离步骤包括沉淀、萃取、离子交换以及电解,其中电解法是未来的方向。

金纳米片的研究和应用进展

摘要:金纳米片由于自身的高比表面积、选择性吸附特性、优异的光电效应以及表面增强拉曼散射,现在多个领域发挥着重要作用。基于30 余篇文献分析,综述了种子介导生长法、液相还原法、模板法、气相沉积法、水热法以及光学合成法等制备金纳米片的方法;探讨了金纳米片在表面增强拉曼散射、生物医学、等离子体传感器和催化剂等方面的应用;对金纳米片的可控合成及其工业化应用提出了展望。

北京大学集成电路学院王玮教授团队在离子电子学仿生神经突触领域取得重要进展

与人工智能不同,生物智能采用离子作为信号载体,以神经突触和神经元为大脑的基本功能单元。通过化学神经递质和离子通道,生物智能可以实现各种生理过程。这种计算机制使得人脑能够迅速处理复杂的非线性问题,展现出卓越的性能。离子电子学利用多种离子作为信号载体,能够携带丰富的生物兼容性信息,可直接在非生物与生物系统之间实现多种离子信号与电信号的转换,有望打破非生物界面与生物界面之间的信息壁垒,在神经修复、脑机接口及混合人工智能等领域展现出广阔的应用潜力。然而,如何在与生物突触动作电位相近的低工作电压下实现仿生突触的关键特性、并实现晶圆级制造,仍是一大挑战。

北京大学物理学院曲波、肖立新研究团队与合作者取得钙钛矿光伏突破性进展

北京大学物理学院现代光学研究所、人工微结构和介观物理国家重点实验室曲波副教授、肖立新教授研究团队与合作者,针对高湿度条件下光伏活性黑相钙钛矿易发生相变的科学难题,采用“原位构建晶体覆盖层”策略,成功突破了高湿度环境下稳定制备高性能钙钛矿光伏器件的瓶颈。相关研究成果以“晶体覆盖层用于在潮湿空气条件下制备黑相FAPbI3钙钛矿”(A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air)为题,于2024年7月12日在线发表于国际期刊《科学》(Science)。

贵金属高温结构材料的强化及应用

摘要:铂族金属具有高熔点、高温抗氧化性、高的抗腐蚀性能及较高的高温强度等一系列性能特点,作为高温抗氧化耐腐蚀结构材料具有重要应用。基于对50 余篇文献的分析,综述了铂族金属高温结构材料的强化机制及应用研究进展,并对未来铂族金属高温结构的研究方向进行了展望。

环保型氧化物增强银基电接触功能复合材料研究进展

摘要:围绕研制开发具有与AgCdO性能相媲美的银基电接触材料,报道了近3 年来传统Ag/SnO2、Ag/ZnO、Ag/CuO三种银基电接触材料体系的研究现状,主要论述国内外研究学者从掺杂改性、制备方法、材料模拟仿真、第一性原理计算等方面开展的大量优化研究;梳理了目前制备银基电接触材料体系的常规制备技术及其工作原理;简述了当前部分学者研制开发的诸如Zn2SnO4、LaSrCuO4、Ti2AlN、La2Sn2O7等新型增强相改性银基电接触材料体系;论述了关于材料模拟仿真、第一性原理等理论计算在电接触材料中的应用现状,这些理论计算为银基电接触材料的成分-结构-性能的优化设计提供了相应的指导意义,有助于缩短材料筛选与研发周期。采用新型表征技术检测Ag/CdO等电接触材料的本质特性,为新材料体系研发推导出最本质的设计判据,而关于电弧能量场作用下银基电接触材料的表面熔池特性、熔池内部冶金反应行为及其电寿命失效机制有待深入探究。

生物陶瓷材料的3D打印技术现状

摘要:3D打印技术在小批量、个性化定制方面具有较大优势,因而在生物医用领域备受关注。可供3D打印的耗材已涵盖高分子、金属、陶瓷和衍生材料等多种类型。生物医用陶瓷熔点高、韧性差,是最不容易应用于3D打印的材料。文章综述了以陶瓷粉体、陶瓷浆料、陶瓷丝材、陶瓷薄膜等不同原料形态为耗材的3D打印陶瓷制备工艺进展,并对SLS、3DP、DIW、IJP、SL、DLP、FDM、LOM等不同工艺制备陶瓷的表面粗糙度、尺寸大小、致密度等参数进行了对比。文章还总结了3D打印生物陶瓷在骨组织工程支架和口腔修复体等硬组织修复领域的临床应用现状。综合比较,SL陶瓷增材制造技术的制造精度和成形质量高,且能制备较大尺寸零件,还可以通过掺杂微量营养元素以及表面功能性修饰来赋予生物陶瓷更好的生物学性能、力学性能乃至抗菌、肿瘤治疗等功能,具有较明显的优势。3D打印制备的生物陶瓷相比传统减材制造工艺,制备的骨组织工程支架和口腔修复体不仅力学性能好,而且具有更优秀的生物相容性和骨传导性等。

生物医用锌基合金性能研究进展

摘要:医用金属植入体已广泛应用于临床骨组织修复中,但是随着临床手术案例的积累,发现不锈钢、钛、钽传统生物金属材料在生物体内长期存在会造成应力屏蔽、组织排异发炎等症状,二次手术会给患者带来极大痛苦。近年来,可降解金属植入体材料的概念被提出并引起重视,由可降解金属制备的植入体在生物体组织中可被吸收分解,并促进血管组织愈合与骨组织再生,被视为新一代医用植入体材料。锌合金由于其优异的降解特性及生物相容性成为近年来的研究热点,在血管腔内支架、骨科及口腔科内固定材料领域拥有巨大的应用潜力。锌合金发展迅速,须及时进行全面总结。总结归纳目前医用锌合金的主要制备方式、材料力学性能、降解行为和生物相容性。基于大量的数据分析与归纳,发现在锌合金中添加Li、Mg元素可细化晶粒,显著提高锌合金强度,添加Mn元素则可在塑性变形中细化晶粒,可提高锌合金的延伸率。与纯锌相比,锌合金中的Zn-(Fe、Cu、Ag)析出相与Zn基体形成的微电池作用提高了锌合金的降解速率。针对新型锌合金成分及先进制备工艺,提出以材料基因工程,指导适用于增材制造的三元高强锌合金体系开发,在提高力学性能的基础上匹配锌合金的降解速率和生物相容性,直接获得具有定制化结构的锌合金近终成型植入体。在系统性汇总的基础上,从性能、开发以及增材制造三个方面展望未来发展方向。

生物3D打印技术及组织工程应用研究进展

摘要:生物3D打印技术基于增材制造思想,有望实现细胞、生物材料等生命物质的自由成形,构建具有仿生天然组织复杂性和异质性的三维组织结构。经过近20年发展,生物3D打印已成为组织工程的主流技术之一,应用于多种组织的构建。综述了生物3D打印的基本技术类型及其在不同组织上的应用现状。