纳米生物润滑剂微量润滑加工物理机制研究进展

摘要:纳米生物润滑剂作为替代矿物型润滑介质的绿色微量润滑剂,已成为学术界与工业界的研究与关注焦点。然而,纳米生物润滑剂微量润滑加工物理学作用机制尚不清楚,难以为其工业化应用提供精准指导与选用原则。为解决上述需求与技术问题,综述了纳米生物润滑剂组分及物理特性,揭示了纳米增强相、基础流体、添加剂对加工性能的影响规律,阐述了纳米增强相在纳米生物润滑剂中的动力学行为与分散机制。其次,揭示了多能场雾化机制、切/磨削区流场分布及微液滴浸润动力学行为,发明了微量润滑新型供给与雾化装置。进一步地,分析了切/磨削加工材料去除热物理机制,研究了先进的多场赋能热损伤抑制策略,构建了纳米生物润滑剂微量润滑加工技术体系。结果表明,纳米生物润滑剂在热源抑制与热耗散特性调控方面效果显著,多场赋能纳米生物润滑剂微量润滑可作为浇注式加工的替代工艺,采用断续有序的凹槽织构砂轮辅助质量分数为2.5%的MWCNTs-棕榈油纳米生物润滑剂微量润滑磨削单晶镍基高温合金DD5,与传统的浇注式磨削工艺相比,磨削力可降低12%,磨削温度可降低9%,表面粗糙度值可降低6%。展望了纳米生物润滑剂发展路线图,为工业界与学术界提供技术支持与理论指导。

基于工业机器人的复杂曲面磨抛关键技术综述

摘要:磨抛加工是提升零件表面质量和精度的重要方法之一。基于工业机器人系统的复杂曲面磨抛技术正逐渐成熟,凭借灵活、占地小、精度高、成本低等优势正逐渐取代人工磨抛和数控机床磨抛成为主流。通过分析基于工业机器人的磨抛加工原理,引出影响机器人磨抛加工精度效果的关键问题:磨抛加工轨迹的规划精度和力控制精度,前者关注加工效率和精度之间的平衡,后者则更侧重于加工的精度和一致性;从这两个方面出发,总结机器人磨抛系统加工轨迹规划方法和柔顺力控制策略的研究目的、特点和成果进展。机器人磨抛系统加工轨迹规划以应用与改进传统数控机床磨抛中常用的加工路径规划方法为主,出现了少量根据机器人特性提出的加工路径规划方法;磨抛柔顺力控制技术出现了被动柔顺、主动(阻抗控制、力/位混合控制)及智能控制等策略,对比分析了各方法原理、研究应用情况和优劣;并提出了未来可能的发展方向。为该领域的研究者提供指引。

燃料电池金属双极板表面改性技术综述

摘要:文章从耐腐蚀性、导电性的角度,概述了燃料电池金属双极板的性能要求、表面改性涂层材料和改性加工方式,重点介绍了不同涂层材料表面改性的特点,及对金属双极板性能的影响,为燃料电池双极板的后续发展提供参考。

2025年氢能奇点将至,绿氢及商用车迎翻倍放量

摘要:2024 年是氢能行业准备,在政策推广、示范效应和产降本三重驱动下明将迎放量带迈向商化。从2025年国家目标看,绿氢项目缺口在9-10万吨(保有量11万吨)、燃料电池汽车缺口在2.5万辆(保有量2.5万辆),绿氢项目和燃料电池汽车的爆发量级均看向翻倍起步。绿氢一体化项目迎爆发,把握制设备和色运营商机会。 2023年-2024年,国内立项的项目绿氢产能已超600万吨,当前落地项目约11万吨。随着政策出台、示范效应和产业降本三者共同驱动,项目落地进程将加速。氢能商用车进入冲刺翻倍年,燃料电池核心零部件迎机遇。氢能商用车进入冲刺翻倍年,燃料电池核心零部件迎机遇。2025年规划确认时点将近,国家层面规划燃料电池汽车推广的保底量,即到2025年之前不低于5万辆,截至2024年10月,燃料电池汽车保有量约为2.5万辆,近半目标缺口需完成。

乘用车车身压铸铝结构件应用现状及连接技术开发应对

摘要:一体化压铸铝合金结构件因其具有高集成、轻量化、刚性好等优点,在乘用车车身上的应用逐渐增多,并且正在向大型化发展。压铸结构件大型化的发展对连接技术提出了更大的挑战。阐述了当前乘用车车身压铸铝合金典型应用部位,分析了大型压铸结构件应用面临的难点、困境以及大型化后连接技术方面的应对策略,展望了未来压铸铝结构件的发展趋势以及对连接技术的新要求。

耐高温树脂及其复合材料性能研究

摘要:针对固体火箭发动机复杂管路一体化成型工艺技术要求,进行了TDS 型苯并噁嗪树脂的粘度、热重曲线、流变性能以及复合材料的力学性能测试,得到了TDS 型苯并噁嗪在注胶温度下粘度小于0.3 Pa.s,工艺窗口大于6 h,该树脂在800 ℃氮气气氛下,残碳率为55.6%,也获得了复合材料的拉伸强度、压缩强度、压缩模量、弯曲强度和层间剪切强度等参数。研究结果表明:TDS 型苯并噁嗪耐高温树脂初步满足了固体火箭发动机复杂管路一体化成型工艺技术要求。

航空高速齿轮服役温度预测模型研究

摘要:随着高速重载下航空传动服役温度的不断提高,齿轮胶合失效成为制约飞行器性能的关键因素。为高效预测航空齿轮服役温度,针对某航空发动机齿轮提出了一种基于顺序耦合的齿轮温度仿真分析方法,考虑固-液-气多相对流换热及不同齿面散热系数等因素,模拟了航空齿轮在不同工况下的本体温度和齿面闪温。经验证说明,该数值方法与ISO/TS 6336-20闪温法标准计算结果吻合良好,不同工况下接触温度最大偏差控制在10%以内;当传动系统输入转速为22400 r/min、转矩为119.4N·m时,分流大齿轮的接触温度达到242.6℃,齿轮胶合安全系数为1.22,存在胶合失效风险。所提出的仿真分析方法能有效预测航空等领域高速齿轮服役温度,为评估航空齿轮胶合失效风险提供了高效可靠的方法。

多材料体系三维集成光波导器件

摘要:随着高速光通信、智能光计算和灵敏光探测等领域的快速发展,光子集成系统正成为重要发展趋势,其对于单元器件性能、系统集成度和可拓展性提出了更高的要求。多材料体系三维集成技术突破了传统单一材料体系的器件性能限制以及二维加工与集成技术的面积与集成度限制,有望实现高速率、高效率、高密度以及低功耗的新型光电集成系统。本文围绕三维堆叠技术和飞秒激光加工技术这两类主要的多材料体系三维集成光波导技术,首先介绍了基于层间耦合器的三维光学耦合技术与三维集成光波导器件,然后介绍了基于三维堆叠技术的光电融合集成器件(光发射机/接收机、波分复用收发器、光互连模块),进一步介绍了基于飞秒激光直写技术的三维集成光波导器件(偏振复用器、模式复用器、扇入/扇出器件、拓扑量子器件)。这些三维集成技术为提升系统性能、提高系统集成度以及降低系统功耗提供了有效的解决方案,从而在先进光通信和光信号处理等领域具有广泛的应用前景。

中国光学十大进展:超快激光与玻璃相互作用——从现象到调控

摘要:集成光子学在经典光学和量子光学中得到了广泛的应用,满足了现代光通信日益增长的要求。玻璃材料因其高度灵活、可设计的结构与光学性能在集成光子器件的研究中焕发新生。在玻璃材料领域,超快激光在玻璃内部直写的多样化功能性微纳结构受到了研究者们广泛的关注。本文简述了超快激光诱导玻璃结构调控研究进展,重点阐释了从微区复合物理场调控到材料化学调控的转变,并对未来研究提出了展望。

机器人热控技术研究现状综述

摘要:现今,采用机器人代替人类完成各种危险的任务已经成为一种趋势。然而,机器人在高温环境下的应用受到热控技术发展的严重制约。本文首先介绍了机器人内部热敏感器件及相应的温控研究工作,进而对近年来机器人热控技术的发展现状进行了综述与分析,最后对高温环境下机器人热防护的关键问题和技术应用分别进行了探讨与展望。