氢环境脆化损伤机理、影响因素及相关问题探讨

摘要:氢能“储运输”装备用金属材料的氢环境脆化损伤一直是材料行业需要重点解决的问题,特别是对于高压储氢装备的长周期安全运行来说,其重要性不言而喻。截至目前,氢环境下材料的脆化损伤机理仍在持续研究中。目前,通过研究氢在材料中的吸附和扩散方式、氢与材料中裂纹萌生和扩展的关系等,初步揭示了不同金属材料的氢脆机理,并通过研究材料种类、氢气压力等因素的影响,提出了氢环境下材料选择的考虑要点。

基于金属有机框架材料电容去离子技术淡化海水的研究进展

摘要:电容去离子技术(CDI)是一种近年来新兴的用于去除溶解在盐溶液中带电离子的脱盐方法,因其具有环境友好、工艺简单、低能耗、低成本等优势而受到越来越多的关注.CDI的电极材料是该技术的核心.金属有机框架材料(MOFs)是一种具有较大比表面积、结构多样、孔径可调节等优点的新型CDI电极材料.首先简要介绍了CDI和MOFs,随后综述了基于MOFs材料CDI淡化海水的研究进展,主要围绕MOFs衍生碳材料及改性、杂原子掺杂MOFs衍生碳材料、MOFs衍生碳的复合材料和MOFs的复合材料四部分展开,最后提出了目前存在的一些不足,并对今后发展方向进行了展望.

熔融法天然气裂解制石墨烯工艺及应用研究

摘要:目的:采用熔融法天然气裂解技术将天然气中的碳元素转化为高价值碳材料——石墨烯,结合可再生能源供能,可实现整个工艺零碳排放且副产氢。为进一步实现天然气的低碳、高值化利用,有必要对熔融法天然气裂解技术进行研究。方法:介绍了熔融法天然气裂解制石墨烯工艺的反应机理、熔融介质研发进展与裂解反应器设计等,并以中国石油西南油气田公司(以下简称西南油气田公司)熔融法所产石墨烯粉体为样本,对其进行分析表征与应用研究。结果:在熔融法天然气裂解实验中发现:高温和高含量原料气有助于提升石墨烯生长的速度和转化率,石墨烯出现厚度增大的现象。西南油气田公司通过对熔融催化体系进行改性,降低裂解反应温度和提高原料气进气含量,成功制得少层石墨烯,提升了石墨烯产量。结论:根据应用性能评估结果,表明西南油气田公司所产石墨烯粉体可在导热、防腐、导电与封堵液等应用领域进行开发。此外,加强裂解反应器及其配套设备的研发、石墨烯行业标准编制将是未来重点发展方向。

车用燃料电池系统绝缘性能分析与优化

摘要:为了提升燃料电池系统的绝缘性,针对零部件的结构特性、材料特性以及安装方式进行了优化设计。首先,对绝缘路径进行电路和水路的失效分析;然后,改善电堆内部绝缘设计及电堆仓结构,优化了电子元件保护策略,同时,更换了水泵、水暖型加热器等高压供电冷却回路的零部件材料,调整了散热器、中冷器以及传感器等零部件的加工工艺和安装方式。最后,通过绝缘电阻测试,新型车用燃料电池系统的静态绝缘电阻超过5MΩ(500 V测试电压下),运行状态下的绝缘电阻超过3MΩ(在线监测状态下)。

海缆护管后安装新工艺设计与应用

摘要:为解决海缆护管后安装过程中浮式起重船抛锚对平台周围海缆等带来的风险并降低护管安装成本,对比分析锚系船、动力定位船和平台后安装等3种方案,得出平台后安装方案在作业工期、费用、安全性方面具有较大的优势。对海缆护管平台后安装新工艺进行设计和理论分析,并通过实践验证安装。结果表明,该新工艺既能规避浮式起重船吊装作业的高风险,又能大幅降低作业成本,安装1根护管可节省船期3d。该新工艺可为在役平台的海缆护管后安装提供重要的借鉴,有望在今后的类似工程项目中推广。

双辊铸轧2060铝锂合金的偏析行为

摘要:为探究溶质偏析行为对双辊铸轧Al-Li合金组织和腐蚀行为的影响,成功制备了不同工艺范围下的铝锂合金铸轧板坯,并构建了热流耦合模型。结合场发射型扫描电子显微镜(SEM),能谱分析仪(EDS),和透射电子显微镜(TEM)探 究了不同工艺条件下组织的耐蚀性差异。结果表明:TRC3高铸轧速条件下的制备出现了显著的宏观偏析现象。通过结合温度和流速的计算,详细分析了这种偏析机制的结果。偏析将遗传到最终的T6状态组织,恶化了T1相的析出,并恶化最终的耐腐蚀性能。深入讨论了偏析对腐蚀行为的影响机理,并提出了一种能够实现低偏析、高耐腐蚀性的铸轧铝锂合金工艺。

锂离子电池负极材料技术现状和发展趋势

摘要:锂离子电池在动力电池、消费电子和储能领域应用广泛。负极材料是锂离子电池的重要组成部分,其性能决定了锂离子电池的储能容量、能量密度以及安全性、循环性、倍率性。文中简要概述了锂离子电池的组成和工作原理,归纳总结了负极材料的分类及特点,对石墨负极材料进行了详细介绍,包括其原材料的生产工艺和石墨化过程等,并研判了石墨负极材料的市场需求及技术发展趋势。

航空结构件机器人磨抛离线编程技术研究

摘要:针对航空结构件机器人打磨中存在的离线编程过程复杂问题,提出一种基于Catia离线编程的机器人打磨轨迹规划方法,利用自主开发的后置处理软件快速生成打磨程序,通过Vericut开发搭建机器人磨抛仿真环境,通过3D视觉粗标定和探头精确标定的组合标定策略提高工件坐标系的标定精度,并基于标定结果实现磨抛程序和仿真环境的快速调整。将该方法可用于框类航空结构件腹板抛光打磨,试验结果表明,该方法生成的程序能够快速精确完成结构件打磨作业,具有一定的实用性,打磨后零件表面粗糙度Ra为 3.2μm,满足打磨要求。