高性能Cu-Ni-Si系合金研究现状及发展趋势

摘要:先进铜基材料具有广阔的市场及良好的发展前景。相比于Cu-Be, Cu-Fe-P, Cu-Cr等合金而言,Cu-Ni-Si系合金具有高强度、较高的导电率、良好的抗高温软化、抗应力松弛性能及低廉的价格等优点,广泛应用于机械制造、航空航天、 交通运输、电子和电气工程等工业领域。本文首先介绍了Cu-Ni-Si系合金的发展现状,并从产品性能及产业化方面论述了国内外存在的差异。该合金发展趋势主要是朝着先进高强高导弹性铜合金方向发展,核心挑战是在提升强度的同时保持甚至提高导电性能,并且由于服役环境的复杂化及服役时间的延长,对于材料服役性能的可靠稳定性也提出了更为严苛的要求。最后从成分设计、加工及形变热处理工艺、 时效析出行为、服役性能等方面综述了Cu-Ni-Si系合金的研究现状,并针对目前该材料存在的不足,展望了高强度高导电铜合金的未来发展趋势。

煤炭与共伴生矿产资源一体化绿色开发战略研究

摘要:煤炭是我国能源安全的压舱石,与煤炭共伴生的矿产资源种类多、分布广泛、储量丰富、利用价值高,推进煤炭与共伴生矿产资源一体化绿色开发是新时期提高矿产资源开发利用效率、加快发展方式绿色转型、保障国家能源和资源安全的必然要求。本文系统梳理了煤炭与共伴生矿产资源的组合类型及分布特征,分析了煤炭与共伴生矿产资源开发的技术成熟度,总结了包括技术一体化、开发主体一体化、管理一体化、产业链一体化在内的4种典型开发模式,评价了经济、安全、生态三方面的开发效益,总结了当前在政策、技术、经济性等方面存在的关键问题。在此基础上,描绘了我国煤炭与共伴生矿产资源一体化绿色开发的发展蓝图,提出了“三步走”的发展目标,建立了涵盖一体化数字勘查设计技术、安全高效协同开发技术、智能绿色低碳技术的一体化绿色开发技术体系,构建了“四个推进,一个探索”的发展路径框架。研究建议,完善矿权管理制度、形成共探共采机制、加大科技创新投入、建立协同勘查开发激励机制,推进煤炭与共伴生矿产资源一体化绿色开发。

面向AI时代的纤维增强树脂基复合材料工艺仿真

摘要:纤维增强树脂基复合材料制造工艺是保证其产品结构效率和应用可靠性的关键,通过计算机进行工艺仿真是提高复合材料制造质量与降低制造成本的重要手段。传统工艺仿真依赖于制造过程中的物理化学机理,通过有限元/有限体积等数值计算方法,以及计算机图形学等辅助设计方法来求解相关机理模型的数学方程,目前已在增强体/预浸料的铺覆、树脂的渗透流动、热固性树脂的固化行为、热传导与热交换、非线性力学及残余应力与固化变形预测等方面得到广泛应用。近年来,人工智能(AI)的迅猛发展,其技术基础机器学习(ML)与人工神经网络(ANN)相结合,已用于增强体铺覆、液体成型工艺和热压罐工艺领域,主要目的是数据挖掘和建立降阶模型。前者可以建立工艺条件与制件固化质量、力学性能等之间的关系,后者则可以提高工艺仿真的计算效率。然而受限于纤维增强树脂基复合材料制造过程复杂、不可测、成本高的特点,在AI 时代的起点,仅依赖实验获得的数据量难以满足ML 的要求,同时数据驱动AI 还面临模型代表性、普适性、可解释性不确定的问题。因此,基于物理化学机理的传统工艺仿真可为数据驱动ML 仿真提供大量可靠数据,进而通过AI 建立更多描述复合材料工艺的定量模型,扩展工艺仿真可计算的过程;同时,通过AI 技术提高计算效率后,满足实时性要求的工艺仿真可进化为制造过程的数字孪生(DT),从而可为复合材料降低成本、提高全寿命周期管理的科学性提供新的技术支撑。

全球关键电子材料应用进展与我国未来发展方向

摘要:电子材料是用于制造电子器件、集成电路、光电子设备、其他电子系统的关键功能材料,在半导体、显示技术、通信、能源存储与转换等领域具有广泛应用,也成为人工智能、物联网、先进传感、量子计算等前沿科技领域发展的关键支撑;关键电子材料技术的创新发展直接影响电子产业链的技术进步和市场竞争力,在国际科技竞争趋于激烈的背景下已经成为支撑国家战略性新兴产业发展的核心要素。本文全面梳理了全球关键电子材料应用进展情况,涉及集成电路、显示技术、光伏新能源、高端电容/电阻、通信技术等产业,涵盖半导体硅材料、电子特气、光刻胶、湿电子化学品、化学机械抛光材料、第三代半导体材料,液晶显示用材料、有机发光二极管材料、激光显示材料、微发光二极管材料、次毫米发光二极管材料,晶硅太阳能电池材料、钙钛矿太阳能电池材料、有机太阳能电池材料,介电陶瓷材料、聚合物薄膜材料、铝箔材料、导电聚合物材料、电极浆料,光导纤维材料、压电晶体材料等细分类型。研究认为,智能移动设备、智能穿戴、物联网等新兴技术快速发展,对电子材料的性能、可靠性、精度等提出了更高要求;我国高端电子材料与国际领先水平相比仍有差距,表现为高端材料技术自主性不足、国际影响力与标准制定权较弱等;未来需围绕电子信息行业高端化、绿色化、自主化、智能化的发展方向,攻关集成电路、新型显示、高端电容/电阻、未来通信行业的高端电子材料并逐步实现国产化替代,推动我国关键电子材料技术与产业高质量发展。

水泥基结构电池:机制、影响因素及应用

摘要:结构储能一体化复合材料为结构与储能的融合发展提供了创新途径。将水泥基材料用作结构电解质,并与电极材料相结合,即可得到水泥基结构电池。本文系统总结了水泥基结构电池的研究进展,阐明了其导电机制和放电机制,并从电极和电解质两个主要方面厘清了影响其电化学性能的关键因素。研究表明,该电池的电压可达1.5 V以上,体积比容量可达8.45×105 mA·h·m−3,并具备充放电的能力。凭借其结构储能一体化特性,水泥基结构电池在绿色储能建筑、智能化混凝土和能量收集混凝土等领域具有应用潜力。最后,指出了目前存在的问题及未来的研究方向。

高品质模铸技术数字化发展思考

摘要:模铸技术作为制造业生产中的关键环节,其产品质量和生产效率对制造业发展起着至关重要的作用。目前,传统模铸技术存在精度控制难度大、生产过程不稳定和资源浪费严重等问题。传感器技术、数据分析、人工智能等数字化技术的出现,为解决上述难题带来了新的契机。基于此,阐述了智能化设备与控制系统的集成、大数据与人工智能的应用以及互联网等技术在冶金行业的应用趋势。介绍了数值模拟技术在模铸和轧制领域的应用,并详细探讨了模铸知识数据平台、离线复现系统、在线控制系统和模铸工业大数据平台在模铸生产中的可应用性,展现了模铸数字化虚拟现实平台的构建意义和作用。模铸技术的数字化转型对于提高生产效率、产品质量,降低成本和风险,推动行业可持续发展具有重要意义。

智能眼镜:AI 形态领航,探索AR 新视界

摘要:AI大模型能力的逐步提升,推动人机交互方式变革,为新型AI 终端载体的诞生创造了条件。眼镜产品由于本身贴近用户视觉的特性,其发展趋势是在形态上逐步叠加光学显示模块,演变为AI+AR 眼镜。从功能对比来看,AI 眼镜专注于语音、图像信息的捕捉,聚焦智能化处理与人机交互,为用户提供智能化的辅助服务;AR 眼镜更侧重于提供沉浸式的增强现实体验。从硬件组成对比来看,AI 眼镜的核心硬件需求聚焦于SoC处理器,且对其提出低功耗、高性能要求;AR 眼镜则不仅依赖SoC处理器及各类传感器,还需光学模组来生成虚拟图像。伴随着方案持续迭代创新,衍射光波导+Micro LED 光学组合有望成为AR眼镜终局方案,为消费者带来更优的显示和佩戴体验

精密微细线用Φ8 mm铜杆的生产技术改进和工艺参数优化

摘要:针对某公司 SCR7000连铸连轧铜杆生产线存在的一系列问题,为攻关精密微细线(Φ0.05 mm以下)系列新产品,实施铜原料均质化技术改进(铜原料表面处理、竖炉上料系统技术改进、加料时间改进)、铜液净化技术改进、氧含量优化、铸坯成型质量改进(控制冷却强度、控制浇铸温度)和轧制工艺优化后, 使用金相显微镜(OM)、扫描电镜(SEM)等分析表征手段对技术改进前后产品的质量进行对比, 经过阴极铜板表面处理、上料系统技术改进及竖炉燃烧工艺优化后,实现了铜液的均质化、 稳定化;通过采用多道次扒渣, 增加扒渣频次, 提高了上流槽与扒渣槽之间的密封性;通过改造下流槽、浇包结构,分别放置过滤砖,实现了铜液的进一步净化;通过将氧含量为(200~300)×10-6的铜杆作为精密微细铜线用料,减少了Cu2O共晶体弥散对铜杆性能带来的不利影响;通过将入轧工艺温度控制在830~840℃,开发的铜杆新产品生产工艺能够稳定地生产Φ0.05 mm精密微细铜线,产品得到用户的认可。

深水油气开采用海洋立管研究进展与展望

摘要:海洋立管作为连接海洋平台和海底管道的关键装备,是深水油气开采全系统中重要而又薄弱的环节,事关海洋石油工业高质量发展;在深水油气资源开发受到广泛关注的时代背景下,系统梳理深水油气开采用海洋立管的研究与应用情况并前瞻未来发展,兼具理论研究和工程实践参考价值。本文从抗疲劳、耐腐蚀两方面分析了深水油气开采用海洋立管的严苛服役性能要求,针对钻井隔水管、钢悬链立管、张力腿平台筋腱立管3 种最为典型且应用广泛的海洋立管形式,综述了相应研究现状,比对了国内外相关产品的差距并展望了对应的发展方向。整体上,深水油气开采用海洋立管作为高风险、高难度、高附加值的石油钻采装备,制造工艺复杂、技术含量高,相关核心材料和技术一直被国外企业垄断;国产海洋立管材料存在强度波动大、断裂韧性低、抗疲劳能力不足等问题,难以全面满足严苛复杂的海洋服役条件,制约了我国海洋石油工业的发展水平。亟需系统布局,引导上下游企业与高校、科研院所联合开展相关产品的基础研发与工程应用研究,加快实施海洋立管制造全产业链的协同创新。