生物基可降解包装薄膜的研究进展

摘要:本文综述了以陆地动植物、海洋动植物为原料制备的各种生物质膜的来源、用途、优缺点以及缺点的改良方法,为包装(尤其是食品软包装)行业提供理论基础。植物来源以聚乳酸(PLA)薄膜材料和卡拉胶为主,动物来源以明胶为主,总结其原料来源、膜的用途以及影响薄膜性质的自身原因,从共混改性、复合改性、交联改性、表面涂覆处理和双螺旋挤出法等方面进行阐述。上述提到的生物基薄膜均可生物降解,其制备和降解都不会污染环境,但理化性能较差,必须对其进行改性,各种改性方法均有优劣。生物质薄膜材料的改性技术仍存在不足,有待开发和完善一种不牺牲材料的生物相容性、设备简单、低成本的改性技术。

生物质碳点荧光材料在生物医药领域中的应用

摘要:荧光材料由于具有特殊的光学性质,在生物医学、生物成像和荧光传感等相关领域有广泛的应用。与传统的荧光剂相比,纳米荧光材料具有稳定性好、荧光强度高等优点。然而,传统的荧光纳米材料通常含有重金属,使其在生物医药领域中的应用受到限制。生物质荧光碳点作为一种新型的荧光碳纳米材料,因具有优异的生物相容性、化学惰性、荧光可调节性,在生物医药、生物传感、荧光成像等多个领域展现出应用潜力。但是,目前生物质碳点应用于生物医药领域的综述文献相对较少。因此,本文总结了不同天然产物制备碳点的绿色合成方法,对碳点的荧光机理进行了分析和归纳,重点阐述了碳点在生物传感、生物成像、药物载体、生物抗菌剂等生物医药领域的应用研究,讨论了存在的问题,并对碳点在该领域的发展方向进行了展望。

基于光电催化的硫化氢高值利用研究进展

摘要:油气田的开采和石油化工的生产过程中存在大量剧毒硫化氢( H2S)气体。传统处理H2S的方法是克劳斯工艺,该工艺只能提取H2S 中的硫元素,潜在的氢能直接以水的形式排放,从而造成巨大的能源浪费。因此,开发与设计出能够实现硫化氢高值利用的新技术已迫在眉睫。光电催化技术是一种能够实现将硫化氢同时转化为氢能与硫化工产品的新型绿色低碳技术,目前已被广泛研究。然而,光电催化H2S走向实际应用的挑战主要在于开发抗硫毒化的高活性光电催化材料和调控硫氧化反应实现高附加值产品的定向转化。因此,本文从光电催化H2S 的反应原理、反应类型、高活性H2S分解光电材料构筑策略和H2S耦合利用四方面进行概述,指出目前光电催化H2S高值利用研究体系存在的问题并对未来发展方向进行了展望,以期为光电催化H2S高值利用的发展提供参考。

火电机组高中压转子选材的研究进展

摘要:为了节约资源和保护环境,传统燃煤机组面临降煤耗、提热效的重大挑战,热效率的提高依赖于机组蒸汽参数的优化和材料的更新换代。转子作为汽轮机组的核心热端部件之一,在高温高压蒸汽中服役并承受各种交变负载。随着蒸汽温度从600℃升高到700℃以上,转子选材面临更严苛的挑战——材料逐渐由传统的9~12%Cr耐热钢过渡到镍基高温合金。对于不同参数的汽轮机转子选材,各国纷纷制定了研究计划。本文论述了转子选材的注意事项以及世界各大国的研究进展,并回顾了国内汽轮机机组的发展情况;综述了国外700℃等级汽轮机高中压转子选材研究成果,为我国700℃等级汽轮机研发提供一定视角和参考。

乘用车座椅材料加工工艺与结构设计

摘要:随着城镇化率的提升,人均交通出行时间普遍延长。汽车内部空间已然成为用户除家庭和工作场景以外的“第三空间”。乘用车座椅是与人体接触时间最长、关联度最为紧密的部件,也是整车性能改进中必不可少的一部分。作为保障人身安全、给予良好乘坐感受的关键部件,研究乘用车座椅的结构和材料对改善安全与舒适性有着重大意义。随着新材料的运用以及加工工艺水平的发展,乘用车座椅的综合性能得到了较大幅度的改善。本工作首先对乘用车座椅的材料及加工工艺进行系统介绍,并列举了乘用车座椅的基本结构及材质演变,结合测量学、人体生理学、材料科学,对乘用车座椅的结构、材质、造型三者之间建立联系,将结构设计、材料选择与乘用车座椅安全性、舒适性的综合性能相互关联。最后通过仿真得出碳纤维材料具有较好的吸能性、抗冲击性和抗疲劳性等优点,能提高座椅的舒适性及安全性,该材料是未来乘用车座椅轻量化的重点研究材料。

光电建筑材料研究进展

摘要:在环境问题、可再生能源需求、光伏技术的发展以及政策支持的多重因素下,光电建筑作为一种可持续发展的解决方案,能够满足人们对绿色、环保建筑的需求,得到了较为广泛的关注。与建筑结合的光伏不同于传统场景中的光伏系统,需要考虑建筑的特点及设计需求,这要求对建筑及光伏技术都有充分的理解。本文主要介绍了光电建筑材料的研究进展,分析了硅材料电池、薄膜电池以及新型电池应用在建筑领域的优势与不足;归纳了适用于建筑不同构成部分光伏组件的结构及安装方式,并对比了不同条件下的实际使用效率;展望了光电建筑在设计和应用过程中所面临的问题及发展前景。本文旨在加深读者对光电建筑的理解,为相关的技术开发及设计提供思路。

纳米改性水泥基材料功能化研究进展

摘要:传统水泥基材料功能单一,无法满足现代社会快速发展的物质文明与复杂工程需求。现代建筑的智能化进程对水泥基材料的发展提出了新挑战,除了满足高强度、高耐久性等基本要求,还需要其具有多样化的附加性能(如保温、耐火、自清洁、电磁屏蔽以及离子固化等),以推动现代建筑的多功能化发展,实现建筑的智慧化转型,布局智慧城市建设。此外,为响应国家新材料新能源发展战略的要求,建筑的节能环保效应成为了水泥基材料发展与应用的又一重大难题。因此,越来越多的研究致力于纳米改性水泥基材料的多功能化发展,旨在为现代水泥基材料的绿色转型及建筑的智慧化转型提供应用基础。本文从纳米SiO2、纳米TiO2、碳纳米管(CNT)及氧化石墨烯(GO)等纳米材料对水泥基材料的功能化改性入手,比较与分析了不同纳米材料的特性、掺入方式及掺量等因素对水泥基材料功能化改性性能的影响;从材料层面分析了不同改性方式对水泥基材料功能化的主要影响机理。最后,本文以“纳米改性-功能化”对应关系的建立为前提,提出了纳米改性水泥基材料多功能协同发展的概念,为现代建筑绿色可持续发展提供依据并提出了展望。

钢纤维取代部分钢筋的地坪设计及应用

摘要:随着重载地坪建造技术的更新迭代,钢纤维混凝土相较于传统钢筋混凝土在施工成本、工艺和质量方面具有显著优势。本工作提出了地坪设计中钢纤维取代部分钢筋的设计方案,通过计算验算了掺有钢纤维的混凝土的荷载承载力,并总结出钢纤维混凝土的应用优势和应用场景,可为同类施工设计及计算方式提供参考。

高强高韧玻璃的研究进展

摘要:因固有的脆性特性导致的低服役安全性是制约玻璃作为透明窗口应用的瓶颈。为满足航空透明件、特种车辆视窗、高铁风挡以及压力容器观察窗等的高强高韧应用需求,提高玻璃的力学性能至关重要。高强高韧玻璃的研究主要涉及:(1)开发具有特定成分和微观结构的高性能玻璃基质,如钠钙硅玻璃、无碱铝硅玻璃、高碱高铝玻璃和透明微晶玻璃等;(2)尝试和优化各种增强增韧技术,如酸处理、钢化、微晶化、引入夹层、引入增强体等。本文基于以上两个方面综述了高强高韧玻璃的国内外研究进展。

高速列车铜基摩擦材料的成分设计研究进展

摘要:铜基摩擦材料因具有优异的导热、抗氧化、抗高温粘着、摩擦因数稳定和耐磨损等综合性能,广泛应用于高速列车制动系统中,是高速列车安全运行的保障。铜基摩擦材料是采用粉末冶金工艺制备的由金属与非金属组成的多元复合材料,可以通过对材料成分大范围内的调节,实现材料摩擦磨损性能的调控。然而,随着高速列车向高速高能载方向发展,摩擦材料需要承受强表面氧化、高热负荷和高载荷冲击的共同作用,铜基摩擦材料在服役过程中出现基体高温软化、石墨润滑相烧蚀、摩擦衰退、以及掉边角等问题。近年来研究者从材料成分和工艺出发,通过对基体组元的固溶、弥散强化提高基体强度,采取润滑组元的多元复合拓宽温度适应范围,选择金属或合金摩擦组元替代陶瓷摩擦组元以及陶瓷颗粒表面镀铜等方法改善界面结合提高剪切强度。本文系统总结了铜基摩擦材料的成分设计研究进展,分析了各组元成分、含量的变化和发展趋势,综述了基体组元、润滑组元、摩擦组元以及界面结构的调控对材料摩擦磨损性能的影响,最后提出构建材料成分⁃摩擦层⁃摩擦磨损性能之间关系,为铜基摩擦材料成分设计提供依据。