精品资源
高温合金GH4169超声喷丸强化表征与热影响分析
摘要: 针对改善高温合金GH4169 表面完整性的问题,对高温合金GH4169 试样进行了超声喷丸和热暴露试验。首先,进行了覆盖率为98%~125%、喷丸强度为0.15 A和0.25 A的超声喷丸试验。然后,对试样分别进行了250、400、550 ℃的1 h 和10 h 的热暴露试验,最后研究了超声喷丸对高温合金GH4169 表面粗糙度、硬度、微观形貌和残余压应力的影响,并分析了热暴露后残余压应力的变化。研究结果表明,经超声喷丸后,高温合金GH4169 表面发生塑性变形,表层硬度显著提高。近表层晶粒细化明显,晶粒尺寸由表层至深度呈梯度分布,并在表层引入残余压应力。当喷丸强度从0.15 A提升至0.25 A时,晶粒细化程度提升了29%。高温合金GH4169 经过高温热暴露后,表层残余压应力发生热松弛,最大松弛速率发生在热暴露初期阶段,之后便趋于稳定,与热暴露时间无关。热暴露温度越高,近表层残余热松弛越剧烈,最大残余压应力深度位置越大。
Na-B-H体系固体电解质的研究现状
摘要:钠离子电池具有成本低和能量密度高的优势,被认为是下一代大规模储能器件的候选之一。使用固体电解质替代液体电解质组装为全固态钠电池可以进一步提升能量密度和安全性。Na-B-H体系是一类非常有实用前景的固体电解质, 具有优异的综合电化学性能。其中,NaBH4本身的钠离子电导率较低,其钠离子电导率的提升主要通过NH2−和I−等阴离子的掺杂来实现;Na2B12H12 的钠离子电导率较NaBH4 更高,且其衍生物如Na2B10H10,NaCB9H10 和NaCB11H12 都具有良好的钠离子传输性能,特别是其混合离子化合物更是在室温下达到了1×10−3 S·cm−1 的钠离子电导率,与液态电解质相当。同时,Na-B-H体系固体电解质也具有较优的热稳定性和电化学稳定性。Na-B-H体系固体电解质可以匹配如NaCrO2,Na3(VOPO4)2F正极以及Na,Na-Sn合金和硬碳负极,组装的全固态电池展现出优异的充放电性能。Na-B-H体系固体电解质的发展方向是进一步提升电化学和机械稳定性,并在全固态钠电池实用化关键指标上尝试突破。
新型ECAP工艺制备超细晶材料研究进展
摘要:等径角挤压(equal channel angular pressing,ECAP)因可制备出超细晶材料而受到界内广泛关注。其制备出块体超细晶材料具有优异的力学性能与耐腐蚀性能,目前已在航空航天、生物医疗、机械电子等领域得到率先应用,成为国内外材料学者研究的热点。然而, ECAP技术在发展和应用过程中仍然受到多重限制。对ECAP工艺进行优化与改进已成为发展趋势。初期,诸多学者通过实验研究证明:新型ECAP可达到“一次挤压,多次应变”的效果,晶粒细化更加明显,可制备出力学性能优异的材料。近年相关学者采用有限元模拟方法,探究新型ECAP技术的影响因素,从而对生产进行指导。本文评述了近年来国内外新型ECAP制备超细晶材料相关研究进展,从工艺原理出发,将新型ECAP工艺分为工艺优化与模具改进两大类,重点对7种不同新型ECAP工艺及研究现状进行归纳总结,对不同ECAP工艺后超细晶材料的显微组织、力学性能进行深入分析, 最后对新型ECAP制备超细晶材料过程中存在的问题与今后的研究方向进行总结与展望,以期为开发晶粒细化效果更佳、生产效率更高的剧烈塑性变形技术提供参考。
大模型一体机应用研究报告(2025 年)
摘要:在“人工智能+”的政策背景下,大模型技术快速发展,成为推动产业智能化升级的核心引擎。大模型一体机作为一种集成化、场景化的产品形态,凭借其行业化落地快速、安全可控、易用性强等优势,正成为促进人工智能与实体经济深度融合的关键基础设施,为千行百业的智能化转型提供高效、便捷的技术支撑。我国大模型一体机技术能力持续突破、产业生态初具规模、应用场景百花齐放,但仍面临技术自主创新能力较为薄弱、应用场景适配难、安全隐私保障机制待完善等挑战。展望未来,随着大模型技术突破和行业需求爆发,大模型一体机有望成为大模型技术普惠化的重要突破口,为“人工智能+”行动提供坚实支撑。
可穿戴电子用前驱体型银墨水研究进展
摘要:可穿戴电子往往具有体积小、质量轻、柔韧性好等特点,而电极柔性化可以有效提高可穿戴电子佩戴时的舒适性、安全性和准确性。喷墨印刷技术作为一种新型的电子器件制造方法,具有成本低、精度高以及速度快等优点,是制备柔性电极的极佳选择。导电墨水的开发是印刷柔性电极中最为关键的一个环节,从根本上决定薄膜的印刷质量和功能。本文对适用于可穿戴电子的前驱体型导电银墨水的研究进行了综述,主要从墨水的关键组分银前驱体出发,重点关注了前驱体型银墨水的配制、后处理以及在可穿戴电子领域的最新进展,并对可穿戴电子用前驱体型银墨水的发展方向进行了展望。
基于数据驱动的复合材料层合板疲劳分层扩展研究
摘要:疲劳分层扩展(FDG)是导致复合材料结构失效破坏的重要原因之一。纤维桥联作为一种屏蔽机制对FDG有重要影响,导致FDG与载荷历程密切相关。如何实现纤维桥联作用下复合材料FDG的有效分析预测成为当前复合材料疲劳研究中需要解决的一个关键问题。为此,本文以不同纤维桥联强弱下的复合材料疲劳分层扩展试验为基础,提出了一种基于长短期记忆网络(LSTM)的机器学习模型,采用该模型能够对不同纤维桥联强弱下复合材料的FDG进行有效分析预测,预测结果在两倍误差带以内,为复合材料FDG行为的表征和预测提供了一种准确快速的方法。
太空探索技术公司运载火箭机构技术发展路线分析及启示
摘要:近年来,重复使用运载火箭的高速化发展和航天运输的商业化趋势对运载火箭机构技术的发展提出了迫切需求。美国太空探索技术(SpaceX)公司的机构技术经历了“猎鹰”系列运载火箭和超重-星舰运输系统的演进与验证,已获得了具有重要价值的实证结果。通过剖析SpaceX公司运载火箭机构技术的演化历程、发展路线及未来方向,揭示运载火箭重复使用需求下机构技术发展的关键要素。面向中国运载火箭复用化、商业化的发展,提出面向新功能需求的机构正向设计、面向新性能需求的机构系统优化、面向新产能需求的机构货架建设等的发展路线。





