动力学效应诱导的近红外光响应温和光热治疗

摘要:癌症是世界上高致死率的疾病之一,传统治疗方法如化疗、放疗和手术等由于其局限性而常常使疗效不尽如人意。光热疗法(Photothermal therapy, PTT)是基于光热治疗剂的光热转换效应,将近红外光能量转换为热能并杀死癌细胞。然而,PTT消融肿瘤所需的温度较高,通常会引起周围正常组织/器官的损伤。采用较低治疗温度(38~43 ℃)的温和光热治疗(Mild photothermal therapy, mPTT)对于推动PTT 进入肿瘤临床治疗具有重要意义。但是,即便小幅度的温度升高也会使癌细胞处于热应激状态并使热休克蛋白(Heat shock proteins,HSPs)表达上调,影响mPTT对癌细胞的杀伤效果。为了改善mPTT的治疗效果,本研究以树枝状介孔硅包覆稀土荧光纳米晶的纳米复合材料(DCNP@DMSN)作为基质材料,在其表面上修饰MnFe2O4 纳米酶并在孔道内装载吲哚菁绿(ICG),设计了一种近红外荧光成像介导和动力学效应诱导的近红外光(NIR)响应mPTT协同治疗体系。该体系呈现出肿瘤微环境响应的化学动力学效应和近红外光激发的光动力学效应,产生的活性氧物质及脂质过氧化物可下调低温光热处理产生的热应激性HSP70的表达,实现动力学效应诱导的mPTT,在4T1 乳腺癌中显示出良好的抗肿瘤性能。同时,该平台具备近红外二区荧光成像功能,可实现对活体肿瘤的定位。这对开发多功能诊疗一体化纳米平台,实现治疗过程的可视化、个体化以及精准化,改善肿瘤治疗效果具有重要意义。

碳化硅真空纳米电子器件技术分析

摘要:新兴的真空纳米电子器件兼具固态器件集成电路和传统真空电子器件的优势。但和硅器件同工艺、同片集成的现状,限制了其在恶劣环境的应用。使用宽禁带半导体碳化硅材料制备真空纳米电子器件,可在耐辐射基础上兼具抗高温特性,使该器件具备良好的综合优势。文章分析了硅器件及集成电路发展中面临的问题,回顾了真空纳米电子器件的发展历史,介绍了碳化硅材料的相对优势以及SiC基真空纳米电子器件研究现状,并对该器件发展及应用前景进行了分析。

柔性表皮与鲨鱼体表粘液耦合作用减阻效果数值模拟

摘要:本文采用粘流数值模拟方法,通过Workbench搭建双向流固耦合求解器,对粘液析出的柔性平板减阻效果进行数值模拟研究。结果表明,耦合粘液析出与柔性覆盖层可进一步提升减阻效果。粘液与柔性平板耦合之后,起到了进一步减阻的作用。从减阻效果来说,粘液与柔性平板的减阻技术可行,能在粘液减阻基础上进一步减少16.3%~21.20%

喷墨打印量子点电致发光显示关键材料与技术的前世与今生

摘要:胶体半导体量子点因其独特的纳米级传输效应、自发光特性以及与大面积工业印刷工艺兼容的流变学属性而备受学术界和工业界的关注。喷墨打印作为一种新兴技术,有望实现新一代可印刷、大面积、高性能图案化量子点发光二极管(QLED)。然而,目前喷墨打印QLED的制备过程存在墨水配方不当造成的界面侵蚀以及成膜后发光效率降低等问题,导致其性能与旋涂器件存在较大差距。本文首先概述了量子点显示技术的基本概念及发展现状,分析了三种喷墨打印技术的分类、原理及其优缺点。然后介绍了含镉、含铅和无铅无镉三类量子点,分析了它们在喷墨打印QLED中的研究进展,接着重点介绍了利用喷墨打印实现高性能QLED的几种典型策略,最后展望了喷墨打印QLED的发展趋势和美好前景。

基于量子点@有序介孔复合材料的Micro-LED色转换特性

摘要:量子点(Quantum dots)由于具有优异的光电特性,广泛应用于发光与显示、太阳能电池、光催化等领域,它的发现和合成获得了2023年诺贝尔化学奖。采用量子点色转换的Micro-LED 全彩化显示技术无需巨量转移,有望实现大规模量产,然而,量子点在高强度Micro-LED 出光激发下的性能和寿命仍存在局限。基于此,本文研究了基于量子点@有序介孔(QDs@SBA-15)复合材料的Micro-LED 色转换技术及其特性,有序介孔分子筛载体独特的孔道结构不仅能够有效提升Micro-LED色转换和光提取效率,且致密的有序介孔材料也一定程度上保障了量子点的稳定性。首先,通过时域有限差分方法(FDTD)建立了Micro-LED 仿真模型,探究量子点粒径和有序介孔材料的孔径对光提取效率的影响;基于仿真结果指导,进一步采用物理共混法制备了QDs@SBA-15复合材料,通过透射光谱、荧光激发光谱、紫外-可见光吸收谱等手段对其进行表征并确定浓度配比;最后,将该复合材料与聚二甲基硅氧烷(PDMS)混合固化成膜,并研究了其光致发光性能。实验结果发现,量子点粒径和介孔材料孔径的匹配度以及量子点和有序介孔材料的比例浓度是影响QDs@SBA-15复合材料发光效率及Micro-LED 色转换性能的关键因素;通过优化,所得复合材料可获得优异的发光性能以及良好的环境稳定性,相比于纯量子点色转换层,复合材料的光提取效率提升了81.73%,复合材料的环境稳定性提升了14.33%,以Micro-LED 作为蓝光光源组成的三基色发光器件工作色域达到了104.52% NTSC。本研究为量子点色转换Micro-LED显示技术提供了理论指导,为实现Micro-LED全彩化开辟了新路径。

新型重力储能的原理效率及其选材选址分析

摘要:近年来,我国把非化石能源放在能源发展优先位置,坚持绿色发展导向,优先发展可再生能源。随着信息化时代的发展,我国工业用电量飞速增长,在这样的背景下,单一使用绿色能源作为电力的供给端,难以稳定持续地满足高峰期和低谷期的电力需求。电力储能技术是目前解决这一矛盾的重要手段,其中重力储能技术由于其绿色环保、能量转化效率高、前期成本低、对地形水源要求低等优点,已成为新型储能方式的重要研究方向。目前已有的重力储能形式有三种,包括塔吊形式、依托山体形式、依托废弃矿井形式等;重力储能技术在国内仍处于起步阶段,很多的技术和理论研究尚不完善,如重力储能系统的原理及安全环保问题、能量转换效率问题、电站选址问题、重块选材问题、适用性问题等。本文基于国内外的储能环境,对三种重力储能形式的原理及工作模式进行了分析。在此基础上,将三种储能模式的效率等参数进行了对比分析,最后从材料强度、使用寿命和地层稳定性等角度出发,针对重力储能系统的选材及电站选址提出了考虑因素及建议,为我国重力储能领域提供了理论支撑,填补了储能技术在储能原理及选材选址方面的空白。

基于荧光方法的循环肿瘤细胞检测研究进展

摘要:循环肿瘤细胞(Circulating tumor cells,CTCs)是指从恶性肿瘤的原发或转移部位脱落的细胞,通过血液循环到达全身。体内CTCs的存在可以反映肿瘤的发生与发展,对肿瘤的诊断和预后至关重要。然而,实现高纯度捕获和捕获后CTCs灭活阻断仍然面临许多挑战。目前开发的用于实现选择性分离CTCs的方案中,荧光方法由于具有高灵敏度、高分辨率、操作简便等特点,在无创检测和快速检测方面具有重要的应用前景。与以往的CTCs研究综述相比,本文详细介绍了CTCs从体外捕获到体内捕获再到下游分析的全过程,并对CTCs的完整诊疗过程进行了系统和详细的总结,为当前的研究提供了新思路,这对于实现早期循环肿瘤细胞的诊断与治疗具有较重要意义。