精品资源
植入式脑机接口系统实现、临床进展与技术挑战
摘要:近年来,脑机接口的临床实验进展使得该技术受到了越来越多的关注。本文综述了植入式脑机接口(implantable brain-computer interfaces,iBCIs) 的系统实现及最新临床进展,随后对制约iBCIs规模化的关键技术及挑战展开了讨论。在系统实现部分,本文将前端电极分为刺入式和贴附式两种类型展开介绍,并将实验范式视作解码器的学习基准放置于信号处理与解码器部分进行讨论,同时将效应器视作iBCIs系统的关键部分进行了单独的讨论分析。在临床进展部分,本文从患者的角度出发,将iBCIs系统的最新临床进展分为功能康复和功能替代两种类型并对两者的功能界限作了深入探讨。最后,文章提出,目前iBCIs关键技术挑战来源于多个方面,包括高通量且高生物相容性神经界面、准确且鲁棒的解码算法和涉及患者与制造商之间可能存在的伦理隐私安全问题。因此,iBCIs 技术发展需要相关各方共同努力助力推进更为广泛且深入的临床应用。
氮化铝粉体工程的研究进展
摘要:电子技术微型化、轻型化、高集成和大功率的发展,对基板和封装材料提出更高要求。氮化铝陶瓷具有高导热性、绝缘性、热膨胀系数与半导体硅相近、机械强度高、化学稳定性好、无毒无害等优良特性,是理想的基板材料之一,具有很好的发展前景。高质量氮化铝粉体是制备高性能氮化铝陶瓷的关键。本文分别归纳介绍了微米/纳米氮化铝合成的新技术、新方法及其研究进展,并展望了氮化铝粉体合成的发展趋势。
SiC陶瓷材料增材制造研究进展与挑战
摘要:碳化硅(SiC)陶瓷材料广泛应用于国防与工业重大领域。增材制造(Additive Manu- facturing.AM)技术的出现为SiC陶瓷材料及其制品的制备提供了崭新的技术途径。本文针对 近年来发展的SiC陶瓷材料增材制造技术(包括非直接增材制造技术、直接增材制造技术等)进 行系统综述与总结。并对SiC陶瓷材料增材制造过程的关键科学技术挑战进行归纳,以及对未 来可能的研究机遇进行展望。本文旨在为SiC陶瓷及其他结构陶瓷材料的增材制造研究提供 参考。
电动汽车退役动力电池中LiFePO4材料再生利用研究进展
摘要:随着“碳达峰、碳中和”目标的提出,新型环保的储能器件迎来了极大的发展前景。特别是,锂离子电池(LiB)凭借其能量密度高、使用寿命长等诸多优势在众多储能器件中脱颖而出。磷酸铁锂(LiFePO4)材料由于具有热稳定性好、循环次数高、服役时间长、无记忆效应等优势迅速成为电动汽车动力电池正极材料的主流。随着大规模 LiFePO4型电池退役浪潮的到来,如何处置和利用这些废旧电池已成为国内外亟需解决的热点问题。以 LiFePO4型电池的失效机理为基准,从宏观和微观两个角度分析了废 LiFePO4材料再生前后的变化,并从补偿锂和构建还原环境两个维度对废 LiFePO4材料直接再生技术的相关研究进展进行了综述,明确提出废 LiFePO4正极材料更适合走直接再生的回收路径,以期实现废 LiFePO4材料的科学回收。
钢铁表面制备金刚石薄膜研究进展
摘要:在钢铁表面沉积金刚石薄膜可以提高其耐腐蚀性、生物相容性、硬度、耐磨性,延长使用寿命,由涂覆有金刚石薄膜的钢铁制成的产品在机械和医疗器械行业中存在广阔的应用前景。然而,在钢铁表面直接沉积金刚石薄膜存在铁(或钴、镍)催石墨化、应力大和易脱落的问题。针对这些问题,人们进行了30多年的探索与研究,在工艺和过渡层方面积累了很多经验。文章综述了直接在钢铁表面沉积金刚石薄膜和以过渡层在钢铁表面沉积金刚石薄膜的研究现状,并对未来的研究方向做了展望。
人形机器人轻量化迈向“镁”好
摘要:人形机器人由感知、决策、控制、执行四大模块构成,其中执行模块在控制器的指挥下驱动机器人的肢体运动,类似于人的肌肉轻量化设计可以减少机器人各部件的重量,从而降低驱动系统所需的力矩和功率,能够发挥出更大的承载力,轻量化将有助于机器人降低功耗、延长寿命等,对机器人性能及商业化落地至关重要。常见的轻量化材料包括铝、镁、PEEK材料等,镁同另外两类材料相比,价格优势已经凸显。当前镁合金牌号或可应用于机器人壳体等部件,镁金属在机器人中的应用逐渐打开,提升了机器人的性能。若未来在机器人其他同样实现镁金属替代,则有望进一步拉动对镁合金用量。
微流控离子浓差极化芯片研制及其生化检测中的应用
摘要:离子浓差极化(ion concentration polarization,ICP) 现象是在外加电场作用下发生在微纳交界面处的一种电富集现象,将ICP 现象与微流控分析技术相结合,可广泛应用于生化分析中带电粒子预富集、目标物分离、靶标物检测等领域。本文首先对ICP 原理及微流控ICP 芯片进行了简要介绍,梳理总结了ICP 芯片的制备技术和方法,其中重点关注了微流道结构设计、纳米结构制备与设计等方面的研究现状与进展。首先对基础单通道ICP 芯片的结构进行分析,进而对并行通道ICP芯片结构以及集成多功能的微流控ICP 芯片进行了总结和讨论,列举了ICP 芯片中纳米结构的制备方法及其优缺点。进而,讨论了优化ICP 芯片的富集效能途径,可通过引入多场耦合、阀门控制等多种手段,实现对靶标物的富集效能优化。最后,针对ICP芯片在多种带电生化样本分析检测中的应用进行综述,指出ICP芯片在匹配检测目标生物特性方面面临挑战,需要提高富集效率和选择性,解决流体控制、混合及传输问题。可以看到,微流控ICP 芯片具有处理样本流量低、分离富集效果好、检测效率高以及易于集成化和小型化等优势,在生化检测领域展示出很好的研究意义和实用前景。
超硬材料在地质钻探中的应用与发展
摘要:超硬材料和钻探工程有着密不可分的联 系,目前已成为钻探行业的重点研发材料。超硬材料在推动钻探行业向深井、超深井领域发展方面发挥了至关重要的作用。本文以金刚石、立方氮化硼和复合超硬材料为基础,介绍了超硬材料的分类及其特点。随后对钻探行业中超硬材料产品的应用和发展进行了详述,并分析钻探行业对超硬材料的需求,进而对其未来发展趋势进行展望,以期能为超硬材料在地质钻探领域的应用与发展起一定的指导作用。