聚离子液体功能材料的合成及应用

摘要:聚离子液体(poly(ionic liquid)s)由离子液体单体聚合生成,兼具离子液体小分子的物理化学性质(结构多样性、可调溶解性、化学/热稳定性、导电性等)及聚合物的机械性能及可加工性,在能源器件、智能响应材料、生物医用材料等领域具有广泛的应用前景。本文主要综述了聚离子液体的合成方法及其作为功能材料在能源器件、智能响应材料及抗菌材料领域的潜在应用。

石墨烯纳米筛: 基础和应用研究

摘要:石墨烯纳米筛材料是当前科技前沿中一种新型二维多孔材料,其平面多孔结构有利于电解质离子的纵向传输,缩短了离子传输路径, 有效避免了传统石墨烯材料普遍存在的问题,如π-π堆叠造成活性面积低、纵向传输性能差、离子传输路径长和电解液不易浸润等,在能量存储与转换领域中表现出比传统石墨烯基材料更为优异的性能。本文综述了近几年来各种结构可定制、结构/组分复杂性高、形态可控制、电化学性能增强的石墨烯纳米筛材料的合理设计和合成的研究进展,着重讨论了石墨烯纳米筛的结构设计对能源存储与转换方面的性能影响,期望为高性能能源存储与转换方面进一步的创新工作提供参考。

全球30大前沿新材料介绍及未来应用趋势解析

新材料是指新近发展或正在应用的具有优异性能的结构材料和有特殊性质的功能材料。目前,前沿新材料主要包括硼墨烯材料、过渡金属硫化物、4D打印材料、仿生塑料等,加快布局前沿新材料已成为我国的重大战略之一。

“双碳”背景下新能源固态电池材料理论设计与电池技术开发进展

摘要:由于可充电锂金属电池(LMBs)具有较高理论能量密度,在便携式电子设备、电动汽车和智能电网等方面有重要应用。以固态电解质和锂金属负极组装的固态电池(ASSBs)具有高安全性,被认为是可提高电池能量密度和有效解决安全问题的一种有前景的电池技术。然而,LMBs在实际实施过程中仍面临许多挑战,如库仑效率低、循环性能差和界面反应复杂等。深入分析ASSBs 的物理基础和化学科学问题对电池开发具有重要意义。为了证实和补充实验研究机理,理论计算为探索电池材料及其界面的热力学和动力学行为提供了一种强有力的支撑,为设计综合性能更好的电池奠定了理论基础。本工作论述了理论计算方法在电池关键材料计算中的应用和研究意义;综述了硫化物固态电解质中Li10GeP2S12 (LGPS)及银硫锗矿体系的理论和结构设计思路,包括锂离子的输运机理和扩散路径。分析了新型反钙钛矿Li3OCl 和双反钙钛矿Li6OSI2电解质体系的理论设计思路。综述了氧化物固态电解质体系在缺陷调控下锂离子的输运机理。此外,本工作针对新型卤化物电解质体系的理论设计也进行了介绍。介绍了计算材料学在电池材料性能研究中的作用:借助理论手段分析离子传输机制、相稳定性、电压平台、化学和电化学稳定性、界面缓冲层和电极/电解质界面等关键问题;理解原子尺度下的充放电机制,并为电极材料和电解质提供合理的设计策略。总结了固态电解质和ASSBs电极与电解质间界面的理论计算的最新进展。最后,对ASSBs理论计算的不足、挑战和机遇进行了展望。要点:(1) 论述了固态电池材料的理论设计方法,包括电池的容量、离子电导率、相稳定性及电压平台。(2) 综述了几种常用的硫化物固态电解质体系的理论设计方法。(3) 利用理论计算构建界面模型,详细分析了电解质与电极间的界面工程问题。(4) 介绍了目前先进的组装固态电池技术以及制备薄膜电池的工艺流程。

钠离子电池层状氧化物正极材料改性研究进展

摘要:由于储量丰富、价格低廉及安全环保等突出优点,钠离子电池(SIBs)被认为是大规模储能应用的主要候选技术之一,而正极材料的开发也决定了钠离子电池的商业化进程和最终性能。钠离子电池层状氧化物正极材料,具有比容量高、构造简单、稳定性好等优势,是最富有前景的钠电正极材料之一。但此类材料目前仍面临电化学过程的不可逆变化、空气中储存不稳定和界面稳定性较差等问题,严重制约着钠离子电池商品化进程的发展。为了解决材料所存在的这些问题,研究人员对其进行改性优化。据此,本工作综述了钠电正极材料层状氧化物离子掺杂、表面包覆、纳米结构设计、P/O 混合相等改性措施所取得的成效,为钠电正极材料层状氧化物改性研究提供了基础,并对层状氧化物的后续发展趋势进行了展望。要点:(1) 层状氧化物型正极材料具有理论容量高、解吸附钠能力优且易于大规模合成等特点,成为商用化钠离子电池极富吸引力的候选主材之一。(2) 针对当前层状氧化物型正极材料突出的多级相变及界面稳定性问题,从多角度综述了当前的改善优化进展。(3) 对未来层状氧化物型正极材料的持续优化方向进行了展望,并提出多种策略协同优化的发展前景。

面向“双碳”目标流程的离子膜电渗析:机遇与挑战

摘要:逐渐加剧的温室效应以及高盐废水的大量排放给环境带来了很大的负担,碳达峰和碳中和政策要求形成绿色生产生活方式以及加强对资源综合利用,这对实现碳减排具有积极指导作用。而选择对高盐废水进行资源化回收的方式以及开发高效的碳捕捉技术有利于增强碳减排过程。离子膜电渗析因其独特的分离特性可实现对高盐废水的浓缩淡化、分离回用。为了降低温室效应,可采用淡化回收高盐废水和高效捕捉CO2相结合的方式降低CO2浓度,实现碳达峰和碳中和的目标以及对废水的零排放。本工作综述了以离子膜电渗析为基础的传统电渗析、双极膜电渗析、反向电渗析、置换电渗析、选择性电渗析和冲击电渗析等六种电渗析技术的工作原理,以及他们在碳捕捉转化和废水资源化方面的应用进展。展望了新型离子膜电渗析在处理高盐废水的应用前景,同时指出新型离子膜电渗析技术在降低碳排放方面的限制与挑战,最后为新型电渗析技术实现低碳排放提供新思路。要点:(1) 提出具有独特分离特性的离子膜技术有助于响应“双碳”政策。(2) 主要介绍以离子膜为基础的六种电渗析技术的工作原理和应用进展。(3) 展望新型电渗析技术处理高盐废水和实现碳减排的应用前景。(4) 指出新型电渗析技术在实现碳排放方面的限制和挑战

面向穿戴或植入式临床应用的ssDNAGFET纳米生物传感器发展现状

摘要:单链DNA探针-石墨烯场效应管(ssDNA-GFET)纳米生物传感器在可穿戴或可植入式临床应用领域有着广泛前景。介绍了现有ssDNA-GFET的应用、标志物检测性能提升方法、真实人体样本溶液中标志物检测,以及面向可穿戴或可植入式临床应用的柔性化研发现状,总结了ssDNA-GFET在投入实际可穿戴或可植入式临床应用前有待解决的问题。

纳米硒的功能设计及其在肿瘤精准治疗中的应用进展

摘要:纳米硒作为一种新型单质硒,与有机硒和无机硒相比具有更高的生物利用度,更强的生物活性和更低的毒性,并且具有抗氧化和抗肿瘤的作用。概述了纳米硒在生物医药中的应用,包括纳米硒用于化疗、放疗、放化疗以及其他临床药物的增敏,纳米硒的功能化和靶向修饰增强抗肿瘤效果,含硒纳米材料在抗肿瘤中的应用,纳米硒的毒理学,介绍了纳米硒制剂产业化发展情况。

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。