精品资源
氢能源无人机关键技术研究进展
摘要:氢能源无人机作为新能源动力无人机中最具发展潜力的机型之一,其发展与绿色航空概念以及低空经济场景联系紧密。总结了氢能源无人机发展过程中涉及的关键领域和技术问题,并对相关研究进行了总结和梳理,旨在为氢能源无人机设计提供参考。首先对氢能源无人机的发展历史、技术优势、应用场景和常见机型进行了概述。然后以总体设计技术、结构设计技术、动力系统设计技术以及飞行控制技术4 大技术领域中涉及氢能源无人机的关键问题进行了分类探讨,分析了每个领域中所面临的技术前沿问题和国内外研究人员目前的相关研究。最后结合相关技术进展,对氢能源无人机的发展提出了建议与展望。研究表明,氢能源无人机的发展潜力仍未被完全发掘,需要多学科、多领域共同发力,发挥氢能在无人机增加续航时间、降低机载质量和助力绿色航空发展等方面的关键作用。
基于数据驱动的镁合金压铸件质量智能预测
摘要: 为实现镁合金压铸件质量的智能预测,降低人工下线检测成本,提升镁合金压铸产业智能化水平,通过收集镁合金大型薄壁压铸件“工艺参数-质量参数”大数据,采用随机森林模型建立工艺参数与铸件产生的缺陷种类间的关系,分析了工业数据中的标签长尾分布现象对机器学习模型预测性能的影响,通过“随机降采样+SMOTE 过采样”算法对数据集分布进行均衡化,最终获得了准确率为89.54%、受试者工作特征曲线(ROC)下面积为0.9838、平均真正率为87.65% 的准确预测模型,实现了极少数含缺陷样本的精准检出,并获得了镁合金压铸关键工艺参数重要性排序。
无添加制备超粗晶碳化钨工艺研究
摘要: 采用无添加方式经高温氢还原制备超粗晶钨粉,对还原过程和钨粉质量进行分析,探讨了工艺条件对钨粉质量的影响。将钨粉与炭黑均匀混合、压制后分别在2 100 ℃和2 300 ℃下进行碳化,对比不同温度所得碳化钨的微观组织。结果表明:在1 300 ℃以上和较高的水汽分压条件下能够产出平均粒度为30 μm 以上、粒度均匀且团聚少的钨粉。在较高温度下碳化能够产出成分单一、耐磨性好、缺陷少的超粗晶碳化钨粉。2 300 ℃下所得碳化钨制备的硬质合金平均粒度达到8.1 μm,比2 100 ℃下所得碳化钨制备的硬质合金具有更高的抗弯强度和抗冲击磨损性能。
稀土基低温磁制冷材料的研究进展
摘要:低温制冷技术在气体液化和储存、航空航天、空间探测及低温科研等领域发挥着极其重要的作用,基于磁热效应的磁制冷技术相较于传统气体压缩/膨胀制冷技术具有绿色环保、高效节能的优势,被认为是最具潜力的新型制冷技术之一。长久以来,探索并获得具有合适工作温区、大磁熵变、宽制冷温跨、大制冷能力以及大绝热温变的磁制冷材料是持续不断的研究目标。综述了应用于低温区的稀土基二元、三元金属间化合物及稀土基钙钛矿氧化物磁制冷材料的研究进展,并对低温磁制冷材料的发展方向进行了展望。
粉末冶金纳米颗粒增强钛基复合材料研究进展
摘要:钛基复合材料(TMCs)作为新一代轻质高性能金属结构材料在航空、航天等重大装备领域展现出广阔的应用前景。与传统微米增强TMCs 相比,纳米增强TMCs 在强塑性协同与热变形能力等方面展现出更为显著的优势,但目前由于纳米增强体分散性和热稳定性等问题,材料的性能潜力尚未充分发挥。如何设计TMCs 的复合体系和制备途径引入纳米增强体,并在热加工与热处理过程中保持稳定性,一直是纳米颗粒增强TMCs 面临的严峻挑战。本文围绕粉末冶金纳米颗粒增强TMCs 工艺特点、制备方法、组织特征与力学性能等方面分析研究现状和进展,指出纳米增强体分散性、热稳定性等制约其发展的基础问题,提出未来研究的发展方向。未来应侧重的研究方向有:(1)碳纳米材料增强TMCs 的界面反应控制与热稳定设计;(2)纳米颗粒增强TMCs 粉体的批量化低成本制备技术;(3)纳米颗粒增强TMCs 专用热变形及热处理工艺研究;(4)纳米颗粒增强TMCs 组织构型化设计及强韧化机理研究;(5)纳米颗粒增强TMCs 材料其他关键力学性能研究。
集成电路异构集成封装技术进展
摘要:随着集成电路临界尺寸不断微缩,摩尔定律的持续性受到了越来越大的挑战,这使得不同类型芯片的异构集成技术成为后摩尔时代至关重要的技术趋势。先进封装技术正在经历一场转型,其关注点逐渐从单一器件转向整体系统性能和成本。传统的芯片封装正朝着三维堆叠、多功能集成和混合异构集成的方向发展,以实现集成产品的高度集成、低功耗、微型化和高可靠性等优势。概述了芯片异构集成封装技术的发展轨迹和研究现状,并探讨了面临的技术挑战以及未来的发展趋势。
镁合金仿生耐腐蚀表面的研究进展
摘要: 为探索镁合金腐蚀保护的表面技术,仿生耐腐蚀如超疏水、超滑表面在过去十年中受到广泛关注。总结了制备镁合金表面的典型仿生超疏水防腐蚀方法,包括电化学沉积、化学刻蚀、阳极氧化、激光刻蚀、喷涂法等,并探讨了各制备方法的特点和镁合金仿生表面防腐蚀的研究进展。此外,总结了制备镁合金防腐蚀超滑表面的常用方法,即先构建结构化基底再注入润滑剂,以及一步喷涂法,并探讨了镁合金超滑防腐蚀表面的研究进展。最后,总结了镁合金超疏水、超滑表面面临的挑战和未来发展方向。





