钢桥疲劳研究进展

摘要:系统归纳与剖析了钢桥疲劳研究新进展,总结了钢桥疲劳荷载、疲劳机理、抗疲劳设计方法、疲劳安全监测与评估、疲劳安全维护等方面的创新成果,探讨了钢桥建设与运维面临的技术挑战,展望了钢桥疲劳创新研究发展方向。研究结果表明:(1)已研发的与桥位处交通荷载特征、结构型式、设计使用年限匹配的车辆、列车、温度疲劳荷载模型,推进了长寿命桥梁抗疲劳设计理论的完善;(2)采用车辆-温度耦合疲劳应力的“冲浪”计算模型能够较好反映钢桥实际疲劳损伤度,温度与车辆耦合作用下的疲劳累积损伤度比仅考虑车辆作用时大10%~15%;(3)涌现了物理疲劳试验、数字疲劳试验和原位疲劳试验技术相融合的疲劳机理研究新范式,部分改变了传统疲劳认知,探明了畸变变形比、应力比对畸变疲劳行为与细节疲劳强度的影响规律,发现了实桥拉吊索服役大应力比条件下钢丝疲劳强度骤降现象,揭示了拉吊索钢丝强度等级由1670MPa提高到2060MPa时钢丝疲劳强度先增大、后下降的客观规律,明确了耐候钢桥细节腐蚀后疲劳强度并未下降的客观事实;(4)全桥多物理场、跨尺度和多概率疲劳孪生模型的构建已逐步实现,促进了数据原生、数据相生和虚实共生的钢桥疲劳元宇宙技术的诞生;(5)为解决钢桥细节带疲劳裂纹工作状态下的设计难题,需要把疲劳裂纹作为控制结构使用功能和安全的关键技术指标,采用损伤容限理论进行钢桥抗疲劳设计;(6)为突破裂纹感知和荷载获取的技术瓶颈,需将声发射、数字摄像/摄影、计算机视觉技术、深度学习等人工智能新技术深度融合,创建钢桥数字化疲劳荷载与损伤监测数据库,为钢桥疲劳机理、设计与评估方法研究提供完备信息;(7)为解决传统线性累积损伤评估模型无法对开裂细节疲劳寿命进行预测的技术难题,需构建基于数字孪生技术的钢桥数字疲劳评估模型,实现疲劳裂纹跨尺度、全程精准数字化描述,建立钢桥疲劳智能监测-孪生模拟-智能评估-智慧决策一体化数字疲劳评估平台;(8)冷维护技术能够对钢桥疲劳裂纹进行靶向、高效加固,且可实现对原结构零损伤或微损伤,能在不中断交通条件下实施,应用前景广阔;(9)针对钢桥疲劳损伤程度、性能提升与延寿目标需求,可灵活运用冷维护、热维护和冷-热混合维护技术,实现钢桥疲劳维护的强韧化、轻量化。

芯片制造中的化学镀技术研究进展

摘要:芯片制造中大量使用物理气相沉积、化学气相沉积、电镀、热压键合等技术来实现芯片导电互连. 与这些技术相比, 化学镀因具有均镀保形能力强、工艺条件温和、设备成本低、操作简单等优点, 被人们期望应用于芯片制造中, 从而在近年来得到大量的研究. 本综述首先简介了芯片制造中导电互连包括芯片内互连、芯片3D 封装硅通孔(TSV)、重布线层、凸点、键合、封装载板孔金属化等制程中传统制造技术与化学镀技术的对比, 说明了化学镀用于芯片制造中的优势; 然后总结了芯片化学镀的原理与种类、接枝与活化前处理方法和关键材料; 并详细介绍了芯片内互连和TSV互连化学镀阻挡层、种子层、互连孔填充、化学镀凸点、再布线层、封装载板孔互连种子层以及凸点间键合的研究进展; 且讨论了化学镀液组成及作用, 超级化学镀填孔添加剂及机理等. 最后对化学镀技术未来应用于新一代芯片制造中进行了展望.

碳量子点上转换材料的制备及其应用研究进展

摘要: 碳量子点(CQD)具有化学惰性,生物相容性和低毒性等优势,可能在能源、生物医药等领域得到广泛的应用.CQD可通过表面被聚合物( 例如PEG)钝化而表现出很强的光致发光特性.在生物成像,疾病检测和药物输送中使用表面钝化后的功能化生物分子更为有效.并且碳材料由于其优异的电化学性能还展现出在催化、电子器件等许多领域广泛的应用前景.我们将对近年来碳量子点发光材料的研究进行总结,并讨论碳量子点在能源、环境和其他一些领域的应用.

光致变色纺织品制备技术的研究进展

摘要:光致变色纺织品因迅速的光响应性和反应可逆性等特质,在时尚和智能纺织品领域应用前景广泛。概述光致变色材料的变色原理和分类,探讨光致变色纺织品制备方法(直接接枝、染色及印花、纺丝、层层自组装、微胶囊法)的最新进展,并总结各种方法的优缺点。直接接枝法可精确控制材料用量,但部分方法需要专业技术和设备;染色及印花法简便经济,适用于大规模生产,但染料易褪色且可能污染环境;纺丝法将光致变色物质纺入纤维,但制备过程复杂;层层自组装法可精确控制材料结构,提高稳定性,但制备周期长且繁琐;微胶囊法可有效隔离材料,提高稳定性,具有量产潜力,可用于开发智能纺织品。最后,简要介绍光致变色纺织品在光信息储存和太阳紫外线检测等领域的应用进展。

航空航天领域轻合金缺陷修复研究现状及发展趋势

摘要:修复与再制造是经先进技术修复后使废旧产品质量达到甚至超过新品的操作。本文总结了熔化类修复方法(激光、电弧、电子束增材修复方法等)和基于搅拌摩擦的固相修复方法的研究进展。对比分析了各种修复方法的可修复缺陷形式、是否可连续送料、修复后样件强度及是否产生新缺陷等问题。以轴向送料的搅拌摩擦沉积技术及侧向送料的摩擦辊压增材制造技术为代表的可连续送料固相修复技术克服了金属构件在熔化类修复过程中易造成组织粗化,产生孔隙、裂纹的技术难题,是航空航天、轨道交通等领域的高强高韧铝合金、轻质镁合金等轻质合金构件修复领域的发展趋势。最后指出可连续送料固相修复技术的研究仍处于起步阶段,开展固相缺陷修复技术的理论研究、开展不同材料的缺陷修复工艺研究及工程化应用、加快相关修复装备的建立是未来亟需研究的重点工作。

铝合金细化剂细化行为研究现状与展望

摘要:晶粒细化处理能够显著改善铝合金的综合性能,对拓展其应用领域意义重大。本文基于异质形核,探讨了点阵错配模型、边边匹配模型以及自由生长模型,肯定了边边匹配模型在筛选潜在晶粒细化剂方面的高效性;根据自由生长模型关于异质相尺寸、形态、分布等对晶粒细化效果影响的理论研究,归纳了物理、化学方法调控第二相进而优化细化效果的研究进展,并且对第二相尺寸影响细化效果的原因进行了理论阐述,最后对优化晶粒细化剂的方向做了展望。

含苝环有机半导体的光催化分解水研究进展

摘要: 光催化分解水是太阳能向化学能转换的一种重要方式, 其中高效稳定光催化剂的研制至关重要. 具有平面共轭结构的苝类有机小分子是一类富含π 电子的n-型半导体, 具有结构易修饰、可见光吸收强以及光热稳定性高等优点, 近年来在光催化领域研究广泛. 我们总结了4 类含有苝环结构的有机小分子苝四甲酸二酐、苝二酰亚胺、苝单酰亚胺以及苝四酸的特点. 此外, 从分子结构修饰、构筑聚合物、金属辅助、与其它材料复合及改变组装条件这几种方式对材料在光催化分解水方面的研究进展进行了综述, 并对含有苝环结构的有机半导体材料在光催化分解水方面存在的问题和前景进行了分析和展望.