热轧工艺对超薄规格冷轧IF钢织构及成形性能的影响

摘要:为了研究铁素体轧制和奥氏体轧制两种不同热轧工艺对超薄规格冷轧IF钢组织、织构和成形性能的影响,采用金相显微镜和XRD衍射仪分别观察和检测了两种热轧工艺下热轧、冷轧、退火带钢微观组织和宏观织构,采用EBSD检测了退火带钢的表面微观织构,采用拉伸试验机分别检测了退火带钢沿轧向、45°方向和横向的力学性能。结果表明:相比奥氏体轧制工艺,铁素体轧制工艺下退火带钢γ织构更强,主要织构组元{111}<110>、{111}<112>强度差异更小,相应r值提高0.45,△r值。降低0.10;铁素体轧制工艺下冷轧带钢位错、亚晶界等晶体缺陷密度更大,且形成的α织构更强,退火过程中具备<110>//ND取向的晶粒优先形核,且在生长过程中吞并邻近低取向差的{118}<110>、{557}<110>等其他取向晶粒,从而导致退火板形成更强的{111}织构。

生物质基抗菌材料制备及其应用进展

摘要:应对病原微生物(如细菌)感染是人类生命健康所面临的挑战之一. 生物质基抗菌材料具有可再生、可降解、可改性及生物相容性好等优点, 是近年来的研究热点之一. 本文系统综述了近年来纤维素、木质素及壳聚糖等代表性生物质基抗菌材料的制备及其应用进展, 涵盖生物质抗菌原理分析、材料制备方法及其抗菌性能优化策略(如季铵化、氨基硅烷化、羧甲基化、硫醇化等结构改性, 以及纳米金属或金属氧化物颗粒组成复配等). 重点介绍了生物质基材料与抗菌分子的接枝原理、金属或非金属复合材料性质及实际应用情况(如医疗、食品保鲜、日用化妆品、纺织及污水处理等). 最后, 总结了生物质基抗菌材料的研发现状和挑战, 并对其未来的发展趋势进行了展望.

通风声超材料屏障研究进展

摘要:通风隔音技术能够在保持空气流通的同时有效阻隔噪音, 为建筑和工业应用提供舒适且健康的环境. 声学超材料作为一类通过精心设计其内部结构来实现特殊物理性质的人工声学材料, 凭借其独特的物理性质和亚波长尺寸的特点, 在通风声屏障领域取得了突破性的进展. 本文综述了该领域的最新研究进展和应用, 包括3种主要的物理原理: 局域共振型、干涉相消型和相位梯度型, 并探讨了从单频设计拓展至宽频设计的方法. 此外, 本文还介绍了在复杂应用场景下的新设计思路和优化方法, 如柔性材料的应用、主动型超材料, 以及人工智能和机器学习的设计优化. 未来, 随着技术的不断进步和跨学科的融合, 基于超材料的通风声屏障将在建筑、交通和工业领域发挥更大的作用, 为人类提供更加安静和舒适的环境.

海洋原油外输软管拉伸刚度影响参数研究

摘要:海洋原油外输软管广泛用于海上FPSO和油轮的原油外输,软管在海洋环境作用下会受到轴向拉力,拉伸刚度是影响轴向受力的关键结构性能参数。根据《API SPEC 17K》标准和《GMPHOM2009》规范的要求,需要确定软管的拉伸刚度。基于Rebar方法定义海洋原油外输软管的帘线增强层,利用有限元软件ABAQUS建立某国产海洋原油外输软管的轴向拉伸模型,并计算不同结构参数条件下的软管拉伸刚度。计算结果表明:帘线增强层是海洋原油外输软管的主要抗拉伸结构层,帘线铺设角度越小其拉伸刚度越大,软管抗拉伸能力对帘线层数比较敏感,帘线层数越多软管抗拉伸能力越强;螺旋钢筋层的钢筋直径和螺距在一定程度的拉力范围内与软管的拉伸刚度保持良好的线性关系,软管的拉伸刚度随着钢筋直径的增大而增大,随着螺距的增大而减小。研究结果可为海洋原油外输软管的结构设计和实际应用提供参考。

基于阴离子电荷补偿机制的高比能二次电池正极材料研究进展

摘要:基于氧相关的阴离子氧化还原反应, 富锂层状正极材料具有放电比容量高、高工作电压和低成本等特点,被认为是最有潜力的下一代高比能锂离子电池商用正极材料. 然而, 富锂材料目前面临着严重的氧释放、不可逆的过渡金属迁移和有害的相转变等, 这些问题直接影响了其电化学性能. 近年来, 结构设计作为一种高效的策略用以改善富锂正极的不可逆氧反应、电压衰减和循环稳定性等, 已取得了优异成果. 此外, 通过调整氧相关氧化还原反应的正极体系, 非水锂-氧气电池借助氧气(O2)和过氧化锂(Li2O2)之间的可逆转化实现了容量的革命性提升. 本文就Li2MnO3域调控、缺陷设计、氧排列次序调控、新构型开发、组成调控和形貌设计等方面, 综述了富锂层状正极材料结构设计领域的研究进展, 并从电池材料结构设计角度探讨了封闭锂-氧气电池取得的进展与未来挑战,为构建新型高比能二次电池体系提出了展望.

人工智能芯片先进封装技术

摘要:随着人工智能(AI)和集成电路的飞速发展,人工智能芯片逐渐成为全球科技竞争的焦点。在后摩尔时代,AI芯片的算力提升和功耗降低越来越依靠具有硅通孔、微凸点、异构集成、Chiplet等技术特点的先进封装技术。从AI芯片的分类与特点出发,对国内外典型先进封装技术进行分类与总结,在此基础上,对先进封装结构可靠性以及封装散热等方面面临的挑战进行总结并提出相应解决措施。面向AI应用,对先进封装技术的未来发展进行展望。

高级氧化技术中活性氧物种的调控策略与机制

摘要:新污染物风险防范得到前所未有的重视, 其治理成为“十四五”生态环境保护工作重点. 高级氧化技术(AOPs)已被证实可通过产生氧化电势较高的活性氧物种(ROS)降解多种新污染物. 现阶段AOPs去除新污染物的研究较多关注如何调节催化剂的性能, 进而提高有机污染物的降解效率. 然而, 本课题组前期研究发现有机污染物的分子结构对污染物的降解效果和降解中起主导作用的ROS的影响. 因此基于实际废水中污染物的分子结构表征结果有目的性地大量产生某种ROS, 有望显著降低工程试错成本、提高药剂和活性物种的利用效率. 本文基于作者前期的研究成果, 梳理了现阶段高级氧化体系中自由基、单线态氧和高价金属的调控方法及机制, 并对目前在AOPs领域中关于活性物种选择性生成的研究提出了建议与展望, 以期为实现新污染物的精确氧化提供参考.

热轧无缝钢管智能工厂建设关键技术与应用

摘要:无缝钢管广泛应用于化工、石油、海洋、地质及军工等各领域,是国防和经济建设的重要基础原材料。长期以来,热轧无缝钢管生产过程中存在无法按支跟踪、关键检测信息缺失、数据资源利用不足等问题,导致在多品种、小批量生产中质量稳定性和一致性提升困难、人员劳动效率低下,迫切需要通过新一代信息技术实现生产技术与产品质量改进。介绍了基于物理逻辑、深度学习与AI标识的热轧无缝钢管逐支跟踪系统、工艺质量智能管控系统和全工序远程智能集控系统等技术开发应用情况,实现了无缝钢管高效集约生产和精益化管控。应用实绩表明:无缝钢管智能工厂的成功实施使得产能提升20%,优化人员比例48%,能介消耗降低7%,质量修磨降级率降低50%,经济和社会效益显著,并为长材智能工厂的建设提供了参考。

腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究

摘要:微电子系统的创新功能设计及其柔性集成封装是推进智能可穿戴设备在主动健康监测领域应用发展的核心动力. 本研究采用控制处理芯片、温湿度传感器、信号采集与无线传输模块以及光纤等光/电子元器件和功能模块设计与开发了一套温湿度数据可视化监测系统,并基于超低模量有机硅非水凝胶和3D间隔织物为主要材料复合制备了一种兼具本征和结构柔性的可拉伸电路板对其实现了一体柔性集成与封装,发展得到了一款可穿戴人体微环境(数据)可视化监测功能腰带. 所使用的新型有机硅非水凝胶复合织物材料杨氏模量和抗弯刚度分别仅为0.113 MPa和114.680 mN·mm,在充分保留原织物基底柔软顺应性的同时,还有效地引入了有机硅类材料固有的优异生物相容性、疏水性和电绝缘性,并实现了断裂拉伸强度和断裂拉伸率等力学性能的进一步增强,分别提高了48.775%和22.507%. 经其集成与封装得到的人体微环境可视化监测功能腰带采用假人进行穿戴模拟测试,通过可拉伸光纤显示板颜色变化成功地实现了人体微环境温湿度变化情况实时探测和监控. 该功能腰带还可通过与手机和电脑等设备进行连接,实现人体微环境数据的移动监测和云存储,在老年人卧床护理等特殊护理领域显示出优异的应用潜力.