智能眼镜:AI 形态领航,探索AR 新视界

摘要:AI大模型能力的逐步提升,推动人机交互方式变革,为新型AI 终端载体的诞生创造了条件。眼镜产品由于本身贴近用户视觉的特性,其发展趋势是在形态上逐步叠加光学显示模块,演变为AI+AR 眼镜。从功能对比来看,AI 眼镜专注于语音、图像信息的捕捉,聚焦智能化处理与人机交互,为用户提供智能化的辅助服务;AR 眼镜更侧重于提供沉浸式的增强现实体验。从硬件组成对比来看,AI 眼镜的核心硬件需求聚焦于SoC处理器,且对其提出低功耗、高性能要求;AR 眼镜则不仅依赖SoC处理器及各类传感器,还需光学模组来生成虚拟图像。伴随着方案持续迭代创新,衍射光波导+Micro LED 光学组合有望成为AR眼镜终局方案,为消费者带来更优的显示和佩戴体验

精密微细线用Φ8 mm铜杆的生产技术改进和工艺参数优化

摘要:针对某公司 SCR7000连铸连轧铜杆生产线存在的一系列问题,为攻关精密微细线(Φ0.05 mm以下)系列新产品,实施铜原料均质化技术改进(铜原料表面处理、竖炉上料系统技术改进、加料时间改进)、铜液净化技术改进、氧含量优化、铸坯成型质量改进(控制冷却强度、控制浇铸温度)和轧制工艺优化后, 使用金相显微镜(OM)、扫描电镜(SEM)等分析表征手段对技术改进前后产品的质量进行对比, 经过阴极铜板表面处理、上料系统技术改进及竖炉燃烧工艺优化后,实现了铜液的均质化、 稳定化;通过采用多道次扒渣, 增加扒渣频次, 提高了上流槽与扒渣槽之间的密封性;通过改造下流槽、浇包结构,分别放置过滤砖,实现了铜液的进一步净化;通过将氧含量为(200~300)×10-6的铜杆作为精密微细铜线用料,减少了Cu2O共晶体弥散对铜杆性能带来的不利影响;通过将入轧工艺温度控制在830~840℃,开发的铜杆新产品生产工艺能够稳定地生产Φ0.05 mm精密微细铜线,产品得到用户的认可。

深水油气开采用海洋立管研究进展与展望

摘要:海洋立管作为连接海洋平台和海底管道的关键装备,是深水油气开采全系统中重要而又薄弱的环节,事关海洋石油工业高质量发展;在深水油气资源开发受到广泛关注的时代背景下,系统梳理深水油气开采用海洋立管的研究与应用情况并前瞻未来发展,兼具理论研究和工程实践参考价值。本文从抗疲劳、耐腐蚀两方面分析了深水油气开采用海洋立管的严苛服役性能要求,针对钻井隔水管、钢悬链立管、张力腿平台筋腱立管3 种最为典型且应用广泛的海洋立管形式,综述了相应研究现状,比对了国内外相关产品的差距并展望了对应的发展方向。整体上,深水油气开采用海洋立管作为高风险、高难度、高附加值的石油钻采装备,制造工艺复杂、技术含量高,相关核心材料和技术一直被国外企业垄断;国产海洋立管材料存在强度波动大、断裂韧性低、抗疲劳能力不足等问题,难以全面满足严苛复杂的海洋服役条件,制约了我国海洋石油工业的发展水平。亟需系统布局,引导上下游企业与高校、科研院所联合开展相关产品的基础研发与工程应用研究,加快实施海洋立管制造全产业链的协同创新。

光电压瞬态技术: 实时分析膜界面动态过程的新手段

摘要:活性分子与细胞膜之间的相互作用在许多基本的生物过程中扮演着至关重要的角色, 然而如何实现对此界面动力学过程的原位、实时、无标记且无侵入监测仍是生物物理研究领域所面临的一大挑战. 我们与合作者开发的光电压瞬态技术, 为解决这一问题提供了一种新途径. 该技术利用硅片光电响应生成电荷, 并将磷脂膜的充放电过程记录为电压瞬态脉冲、建立了该充放电过程与界面瞬时结构和性质之间的关联性. 因此, 通过对随时间演化的电压脉冲进行分析, 可以揭示活性分子作用下膜结构实时动态变化情况, 尤其是不同作用状态之间转换的时间信息, 可作为传统技术的有益补充. 同时, 该技术设备搭建成本低廉, 操作方便, 无需复杂的数据处理过程. 本综述概述了光电压瞬态技术的工作原理、设备搭建以及数据处理方法, 并以经典细胞膜模型——磷脂双层膜为例, 总结了该技术在探索磷脂膜水合特性及其与活性分子(如表面活性剂、聚合物、多肽和纳米颗粒) 相互作用机制方面取得的最新进展. 最后就该技术优缺点进行讨论并展望未来发展前景.

电磁屏蔽导电涂料的研究与应用进展

摘要:为了深入了解电磁屏蔽导电涂料的制备与性能,促进高性能、低成本的电磁屏蔽导电涂料研究与应用发展,本文首先介绍了涂料的导电机制和电磁屏蔽基本原理。其次,以不同类别的导电填料和树脂基体为重点,系统介绍了各类材料结构、性能的差异对涂料整体性能的影响,综述了当前的研究进展及针对实际应用进行的多功能改良。最后,针对电磁屏蔽涂料目前在填料结构、填料合成、聚合物基体与填料的相容性的问题进行了总结及表达了对未来产业发展的展望。

基于CNT的柔性自支撑锌空气电池正极研究进展

摘要:随着可穿戴智能设备的不断发展, 柔性锌空气电池(FZAB)作为新一代极具应用前景的储能系统受到了广泛关注, 但其二次电池的实际应用仍处于起步阶段. 如何优化其柔性结构并提高电池性能是目前研究的关键与重点. 碳纳米管作为新一代超级纳米材料, 具有优异的导电性、柔韧性、质轻等特点, 为柔性锌空气电池的发展提供了新的方向和选择. 为了探究碳纳米管纤维材料在自支撑锌空气正极中的潜在应用, 本文从碳纳米管的合成方法与构效关系入手, 通过阐述锌空气电池的电化学工作机理与柔性化设计, 总结了碳纳米管在FZAB应用中所发挥的不同作用, 综述了近些年来基于碳纳米管的柔性自支撑空气正极的研究进展, 讨论了目前碳纳米管与自支撑空气正极发展所面临的问题, 并对未来进行了展望. 旨在为纺织、纤维、材料及电子等领域的相关从业者进行柔性锌空气电池(FZAB)的研究与开发提供一定的参考与指导.

高频磁场在材料加工中的应用与最新进展

摘要:材料电磁加工向高频技术方向发展,高频磁场在材料加工过程中发挥着重要作用。传统高频磁场技术相较于工频电磁加工技术可以对导电材料产生更显著的热效应和电磁力,通过无接触的工作方式,广泛应用于感应淬火、感应焊接、感应热弯成型、感应熔覆以及电磁悬浮熔炼等金属材料的制造和加工中,具有高效率、高可控性、低能耗的优势。近年来发展出的高频磁场作用于低电导率液体中的新应用,突破了传统电磁技术在处理低导电材料时的限制。由独特排布的双相电感线圈产生的高频行波磁场可以对电导率为1~100S/m低导电液体产生厘米每秒量级的驱动效果,可以强化工业中液态钢渣等低导电液体的三传过程,有望应用于热态钢渣提铁技术,提高钢渣铁资源的回收率。结合传统高频技术和高频行波磁场技术的特点和应用,高频磁场技术在材料加工领域的未来发展需通过线圈结构设计以及频率控制实现复杂的加工过程,并将可应用的材料拓展到低导电介质领域。