钢的高性能化理论与技术进展

摘要:高强度化始终是钢的发展主题,同时还需要解决高强度化后导致的韧塑性降低、疲劳破坏和延迟断裂敏感性增加等问题。在获得高的力学性能之后,实际应用时还需要材料具有良好的工艺适应性与服役性能,达到合适的材料生产-零件制造-服役评价的技术匹配。本文以耐候钢、合金结构钢、紧固件用钢、高氮奥氏体不锈钢、马氏体不锈钢为案例,回顾并展望了与耐腐蚀、高强度、高品质等相关的材料发展动向。

面向生物医疗应用的电刺激集成电路与系统综述

摘要: 电刺激技术被广泛应用于多种生物医学领域,包括心脏起搏器、人工耳蜗、肌肉重建、视力恢复和癫痫抑制等。与传统的药物治疗或手术方法相比,电刺激具有更小的侵害性、更高的灵活性和更好的可恢复性,并且消除了药物依赖性与成瘾性的风险。由于集成电路具有功耗低、可靠性高、可编程性强、易于多功能集成和易于大规模生产等优势,能够满足小型化、智能化和经济高效的生物医用需求,近年来已发展成为电刺激器设计的首要选择。然而,高密度电极与刺激产生电路的集成,给电极组织接口设计带来了很大挑战。本文从电极组织接口出发,全面概述了植入式电刺激器相关的集成电路设计,包括基础驱动电路拓扑和高性能复杂设计,重点分析了生物医用植入式芯片的可靠性与安全性,并介绍了刺激器与闭环系统中能量收集等模块结合的创新设计。同时结合课题组在电刺激和接口电路方面的工作,讨论了电刺激技术和接口系统的未来方向。

AI驱动的新材料智能研发与数据标准化

摘要:近年来, 随着人工智能(artificial intelligence, AI)和自动化技术的快速发展, AI驱动的自主实验室在新材料智能研发领域展现出巨大潜力, 将成为新材料研发范式变革的“新基建”. 本文聚焦AI驱动的自主实验室在加速新材料发现中的国内外现状和核心挑战, 综述了AI驱动自主实验系统在加速新材料发现中的最新进展. 自主实验室通过将实验室自动化、机器人技术和AI算法、数据库融合为一个整体, 形成闭环反馈工作流, 在无需人工干预下高效优化目标性能. 根据自主实验室硬件和软件的技术特征和自主化程度, 可将其分为等级0至等级5. 数据驱动是AI技术的基础, 除了自主化程度外, 自主实验室具备智能化数据工厂的特征, 自主实验室既是数据的生产者也是数据的使用者, 数据标准化是打破自主实验室信息孤岛, 从“孤立智能”迈向“协同智能”的关键环节. 文中最后探讨了自主实验室建设面临的挑战并对未来发展方向进行了展望.

商业航天,大国重器

摘要:中国作为传统航天领域的领先国家之一,发展商业航天成为我国提升综合国力、抢占未来科技与经济发展制高点的关键举措。近期商业航天司的设立及《推进商业航天高质量安全发展行动计划(2025-2027年)》的出台,也充分彰显顶层对商业航天发展的重视。低轨卫星座具有时延、发射灵活度高和制造成本等特点,是世界主要航天国家争夺空间资源的新赛道。中国向国际电信联盟(ITU)申请低轨卫星数量总已达5.13万颗,其中数量超过万颗的星座计划有三个:GW星座、千帆星座和鸿鹄-3星座。我国商业航天市场规模逐年增长,已初步形成覆盖上游制造、中游发射与运营、下游应用服务的全链条生态。

面向长时储能的液流电池储能技术: 发展、挑战及未来展望

摘要:随着可再生能源的快速发展, 新型电力系统对长时间储能技术的需求日益增加. 液流电池体系因其高安全性和长寿命的特点, 成为理想的长时储能设施选择. 液流电池系统由电池组、电解液和循环泵组成, 通过管路相互连接, 利用电解液中的氧化还原反应进行化学能与电能的相互转化, 从而实现能量的高效存储和释放. 本文综述了无机和有机液流电池体系的关键材料, 从电池组件、电解液和催化剂等方面优化电池性能的研究进展, 以及液流电池在材料成本、性能优化和抑制副反应等方面面临的挑战. 最后, 本文展望了液流电池在未来长时储能技术中的发展前景, 指出需要加大新材料和技术的开发, 推进高性能的电堆设计, 开展不同环境下运行模式的创新, 实现液流储能的高效利用.

碲化锡基热电材料的研究进展

摘要:热电材料能够实现热能与电能的直接相互转换, 展现出在极端环境条件下的出色性能, 是重要的新型能源材料之一. 传统的PbTe以其卓越的电子和声子输运特性在中温区热电转换领域占据着主导地位, 然而铅毒性涉及的环境问题正促使热电材料向无铅路线发展. 作为PbTe的潜在替代者, SnTe近年来引起了热电领域研究者的广泛关注. 众多新技术与策略被应用于改善SnTe材料电输运与热输运性能, 使SnTe热电性能实现了大幅提高. 尽管距离替代PbTe并实现工业化应用仍有较大差距, 但SnTe依然显示出作为卓越中温区热电材料的巨大潜力. 本文介绍了SnTe材料的内在非化学计量特点以及热电输运特性, 综述了在p型SnTe半导体中成功应用的载流子浓度优化、能带工程、能量过滤和声子工程等性能优化策略, 并总结了近年来对n型SnTe材料和全SnTe基热电器件的探索工作.最后, 对SnTe热电材料的研究进展进行了总结, 并对其今后的研究方向提出了展望.

多重刺激响应有机余辉材料: 设计策略与动态响应机制

摘要:在智能互联时代, 有机余辉材料因其多维响应特性成为智能感知领域的研究热点. 具有多重刺激响应的有机余辉材料, 能够捕捉多种环境信息并实现多维度协同响应, 实现更加敏锐且特异性的智能集成传感. 但其发展面临着不同刺激响应的兼容性、余辉性能与响应灵敏度的动态平衡等挑战. 近期的研究通过分子结构调控、聚集态调控等策略, 实现了多重刺激响应与高亮长寿命余辉的同步提升. 本综述总结了近期小分子(单组分/多组分)及聚合物体系的设计方案与策略, 分析刺激诱导磷光变化的机制, 并探讨其在信息加密、环境监测等领域的应用潜力, 希望本文能为开发智能动态感知余辉材料提供新的见解和参考.

棒线材连铸-直接轧制工艺关键技术研究

摘要:为了满足我国钢铁行业转型升级对绿色、可持续发展的需求,需解决棒线材生产中能源损耗严重的问题。深入研究了棒线材连铸-直接轧制工艺的关键技术。该工艺是一种适用于普通棒线材生产的新型工艺,通过充分利用连铸坯冶金热能,可完全取消铸坯加热工序,从而实现节能减排、减少烧损的目的。从生产能力匹配、温度匹配、节奏匹配和生产管理4个方面研究和分析了棒线材连铸-直接轧制工艺的关键技术,推导了生产能力匹配和节奏匹配的数学表达式,研究了连铸至轧钢全过程铸坯温度的变化规律,并给出了连铸-直接轧制工艺一体化生产制度和典型工艺平面布置方案。研究结果表明:棒线材连铸-直接轧制是一种绿色、环保、低成本、高效益、高效率的生产方式,具有较好的经济效益和广阔的应用前景。

生物阻抗检测芯片设计综述

摘要: 综述了生物阻抗检测芯片的设计与优化,重点分析了双电极与四电极的适用场景及其在测量精度和便携性上的取舍。此外,针对不同检测需求,详细探讨了ADC法、DAC法、逐次逼近法、半正弦DAC法及基线消除技术的实现原理与特点。研究结果表明,双电极结合高效DAC方法在便携设备中具有显著优势,而四电极配置则适用于高精度阻抗测量场景。本文为生物阻抗检测芯片的设计提供了理论支持,并展望了其在可穿戴医疗设备和动态监测领域的应用前景。