酸化生物炭负载锰材料对Pb(Ⅱ)的吸附性能及机理研究

摘要: 水体中重金属污染问题越来越被水环保领域研究人员所重视,如何高效去除水体中重金属问题被广泛研究。研究利用农林废弃物核桃壳作为原材料,制备出核桃壳衍生生物炭材料(WC)以及改性生物炭材料(SMWC)。并对其进行表征分析,研究材料的物理微观以及吸附特征性质,表征结果表明,改性后的炭材料表面孔隙中聚集较多的细小颗粒,增加了表面的粗糙程度;较改性前O—C=O、C—O 和O-Mn-O 基团的含量有所增加。研究了外界条件对SM-WC去除Pb(Ⅱ)的吸附性能影响。结果表明,在温度298K下,pH=5.5,SM-WC投加量为0.4g/L,Pb(Ⅱ)浓度为20mg/L的条件下,模拟吸附水中Pb(Ⅱ)的效率最高,去除率为93.8%。根据吸附动力学、等温线和热力学分析表明:SM-WC对Pb(Ⅱ)的吸附过程更符合拟二级动力学和Langmuir等温吸附模型,属于单分子层吸附,并且以化学吸附为主。

炼油厂重芳烃油加工路线优化

摘要:某炼化企业原设计中,所产重芳烃油作为原料全部进入延迟焦化装置进行加工,其所产焦化柴油再进入柴油加氢裂化(DHC)装置进行二次加工,存在加工流程较长,加工效率低的问题。应用PetroSIM流程模拟软件建立了延迟焦化装置、DHC装置、柴油加氢精制(DHF)装置的机理模型,从总流程角度对3套装置进行联合诊断,印证了重芳烃油加工路线确实存在加工效率低的问题。通过对重芳烃油全流程的模拟与优化,提出了重芳烃油的加工优化方案:大部分重芳烃油按照溶剂油出厂外销,少量重芳烃油进入DHF装置或DHC装置进行加工。重芳烃油加工路线优化后,缩短了重芳烃油加工路线。生产报告显示优化后一个季度整体经济效益提升了3997.33万元,达到了运营优化和效益提升的目的,对同类型炼油厂重芳烃油全流程优化加工具有较好的借鉴意义。

生产低硫残渣型船用燃料的加氢反应条件研究

摘要:为生产低硫残渣型船用燃料油,采用典型高硫渣油原料在中型渣油加氢装置上开展了反应条件(体积空速、氢分压、反应温度及氢油比等)对渣油加氢脱硫及残炭加氢转化过程影响规律的研究,并进行了反应条件优化试验。结果表明:在相同催化剂体系下,体积空速、氢分压和反应温度是影响渣油选择性加氢脱硫的关键因素,而氢油比的影响较小;在兼顾加氢催化剂体系的加氢脱硫性能和稳定性的前提下,较高且适宜的体积空速(0.20~0.24h-1)、适合的氢分压(13~15MPa)以及不高于380℃的反应温度更有利于渣油选择性加氢脱硫。基于以上结果,通过综合调整匹配不同反应参数,在满足加氢产品硫质量分数低于 0.50%的情况下,残炭提升了11.3百分点、降残炭率降低了5.1百分点。

细菌纤维素功能化改性及其在医学领域的研究进展

摘要: 细菌纤维素(bacterialcellulose,BC)具有独特的三维网络结构,其孔隙率高、机械强度大、生物相容性好,可作为人造血管、组织工程以及伤口敷料的理想候选者,是生物医学材料研究的热点之一。然而,由于BC本身并不具备抗菌、生肌止血等特点,限制了其在医学领域的进一步应用。因此,通过非原位和原位改性方法将功能性聚合物、碳基纳米材料以及金属纳米颗粒引入BC,获得具有增强功能特性的复合材料,这些改性的BC材料在该领域中展现出巨大的应用潜力。本综述介绍了BC的制备,及其功能化改性,并总结近年来其在医疗领域的主要成果,为开发低成本、绿色安全和多功能的医用材料提供参考。

锂离子电池快充电解液设计策略

摘要:近年来,以石油为主要动力源的交通运输带来了环境污染和化石能源枯竭等负面问题,为了实现交通运输电气化,以锂离子电池为动力的电动汽车成为了焦点。现如今电动汽车技术在续航里程、安全和成本等方面都取得了长足的进步,但由于电动汽车的补能时间远长于内燃机汽车加油时间,因此备受消费者的诉病。为了增加市场渗透率,电动汽车需在5~10min内充满80%的电量,相应于5C以上的充电倍率,这被称为极速快充技术(XFC)。电解液作为正负极之间离子输运的通路,对锂离子电池的快充性能有着举足轻重的影响,优化电解液是实现高能量密度锂离子电池快速充电的重要方法之一。综述了新型快充电解液研究的最新进展,从促进锂离子在电解液中的快速迁移、降低锂离子去溶剂化能垒和设计高性能固体电解质界面的角度进行了评述,并对能提高快速充电能力的电解液进行了总结和展望。

海上油田无人平台技术现状与发展趋势

摘要:随着海上油田开发规模的不断增加,生产操作成本也迅速增加.无人平台技术由于结构简单、动设备少、生产作业费低,因此在近年来得到了广泛关注.然而,无人平台模式在生产运行过程中也暴露了修井作业成本高、登临平台难度大、设备监测难等问题.笔者通过调研当前无人平台开发过程中的先进技术和优秀做法,对无人平台开发经验进行了系统总结和概括.本文旨在为无人平台技术的进一步推广应用提供参考.

贵金属Pt掺杂对MgH2/MoS2异质结脱氢性能的影响

摘要: 二维材料中二硫化钼(MoS2)被认为是一种很有前途的高效、低成本析氢反应(HER)催化剂,并且已经被证实能够增强氢化镁(MgH2)的脱氢性能,但是对其深层机理仍然缺少认识。在密度泛函理论(DFT)的基础上,通过第一性原理计算方法在理论上进行研究,构建了MgH2/MoS2的异质结模型,深入探究MoS2对MgH2脱氢性能的影响,并且引入贵金属Pt掺杂进一步改善复合结构的脱氢性能。研究表明,MoS2能够增强MgH2的脱氢热力学性能,MgH2/MoS2 异质结的脱氢性能增强是由于MoS2的引入导致MgH2表面发生大量电荷转移削弱了Mg—H键相互作用以及带隙明显变窄。此外在Pt原子的掺杂使得MgH2/MoS2异质结层间距增大利于H-的迁移,同时进一步的缩小带隙宽度,全面提升了脱氢热力学和动力学性能。

钢中过渡金属氮化物结构和物性的第一性原理计算

摘要: 钢中过渡金属氮化物(TiN、NbN、TaN、VN)的性质对于深入理解材料的微观结构和性能具有重要意义。采用第一性原理计算方法,深入分析了钢中过渡金属氮化物的晶体结构、力学性能和电子特性,揭示了这些氮化物的稳定性。研究发现,TiN 具有最大的形成焓绝对值,显示出最高的结构稳定性。能带结构分析表明,TiN、NbN、TaN 和VN 均为导体材料,呈现金属导电性质。弹性性能计算揭示了VN 的体积模量为315GPa,显示出较大的不可压缩性。此外,TiN 和VN 的剪切模量为184GPa,表明他们在抵抗剪切形变能力方面优于NbN和TaN。弹性各向异性计算说明TiN 比NbN 的微观结构更均匀,而VN 具有比TaN 更均匀的微观结构。电荷密度分析确认了Ti-N、Nb-N、Ta-N 和V-N 键的共价特性。布局数计算进一步揭示了TiN、NbN、TaN 和VN 中存在离子键和共价键的相互作用。这些结果有助于实现钢中过渡金属氮化物的合理控制,对提升含氮不锈钢性能具有重要意义。