耐高温特钢管道在循环载荷下的疲劳行为及其影响因素

摘要:本研究全面分析了循环载荷对耐高温特种钢管道疲劳行为的影响。关键发现包括:应力幅、平均应力和载荷频率是决定管道疲劳寿命的主要因素;高温环境会显著降低材料的疲劳抗力;载荷历史亦对疲劳行为产生重要影响。为提升管道性能,研究建议采用先进材料技术、优化设计,调整载荷条件,并考虑极端工作条件。这些结论不仅为耐高温特种钢管道的设计、应用和维护提供了科学指导,也为未来材料技术的发展指明了方向。通过深入理解循环载荷对管道疲劳行为的影响,能够有效预防管道故障,为材料科学领域提供了新的研究视角和实验数据。

涂装工业挥发性有机化合物治理技术研究进展

摘要:[目的]涂装工业因使用有机溶剂而产生大量挥发性有机化合物(VOCs),它们不仅危害人类健康,还会引发雾霾、光化学烟雾,导致温室效应。但 VOCs 种类繁多,性质差异大,治理技术多样,如何选择合适的技术成为工程应用的关键。[方法]对涂装工业 VOCs 治理技术的进展进行总结,分析各种治理技术的研究重点及应用条件,为 VOCs 治理技术的工程应用提供参考。[结果]对于水溶性好、生物毒性弱的 VOCs,宜选择生物法;对于风量大、浓度低的 VOCs,宜浓缩后再处理;对于无回用价值的 VOCs,宜选择热力氧化法;对于低浓度、易分解的 VOCs,宜选择等离子体法。[结论]工程应用时应根据 VOCs 的种类和浓度,综合考虑具体的治理技术。

颗粒增强钛基复合材料构型化复合研究进展

摘要:近年来以空天飞行器为代表的国家重大战略装备蓬勃发展,对轻质、高强钛基复合材料(TMCs)的需求呈高速增长趋势,并促使其向高性能化方向发展。在复合化的基础上“师法自然”,对组织进行构型化设计是提高钛基复合材料综合性能的有效途径。构型化组织中软硬相间的变形协调作用与异质变形诱导的强化和应变硬化效应能够显著提升材料的加工硬化能力,并获得理想的强塑性协同效果。本文围绕材料研制的各个环节,从基元复合技术、构型化复合工艺途径、组织特征与力学性能等方面综述了钛基复合材料构型化复合的研究现状,深入讨论了构型化组织的共性特征与强韧化机理,总结了目前研究存在的问题与技术难点,并指出钛基复合材料构型化复合的未来发展方向。

镁合金建筑模板的表面化学镀与耐蚀性能

摘要:采用化学镀的方法在镁合金建筑模板表面分别制备了单一Sn膜、单一Zn膜和复合Sn-Zn膜,对比分析了pH、温度和膜层数对镁合金表面膜层显微形貌和电化学性能的影响。结果表明:对于单一膜,在pH值为6.0、温度为75 ℃时制备的单一Sn膜和在pH值为9.5、温度为75 ℃时制备的单一Zn膜都具有较好成膜质量;当膜层数为9时,复合Sn-Zn膜完全覆盖镁合金基体且膜层成膜质量较好。相较于镁合金基体,单一Sn膜、单一Zn膜、复合Sn-Zn膜的腐蚀电位都发生正向移动,腐蚀电流密度发生不同程度减小,复合Sn-Zn膜的腐蚀电位最正、腐蚀电流密度最小。在镁合金基体表面化学镀单一Sn膜、单一Zn膜、复合Sn-Zn膜都有助于提升镁合金的耐蚀性能,且复合Sn-Zn膜对基体的保护作用要优于单一Sn膜、单一Zn膜。

新型WN纤维透明电极的制备及透光导电性能

摘要:纤维透明电极兼具高透光与高导电性,有望取代传统锡掺杂氧化铟(简称ITO)成为新一代透明电极材料。金属纤维虽具有高导电性,但在受热或酸碱腐蚀条件下其性能急剧下降,应用环境受限。针对上述问题,本文采用电纺丝结合氮化热处理工艺制备出新型WN 导电纤维,进一步通过近场直写方法实现纤维的有序排列与WN 纤维透明电极的图案化构筑,以获得高透光高导电且耐热耐腐蚀的新型高性能透明电极。研究结果表明,WN 纤维的导电性随氮化温度的升高而增大,900℃氮化制备的WN 纤维的电导率高达2189 S/cm。通过近场直写可以有效调控WN 纤维透明电极的网格结构,进而调控其透光性与导电性。当网格间距为200μm 时,对应透明电极的透光率高达94%以上,方阻低至6.0Ω/sq,性能优于目前报道的金属纤维透明电极。与金属纤维相比,WN 纤维透明电极还具有优异的耐热与耐腐蚀性,在160℃氧化16h,方阻仅增加8%,在pH 值为1~13 的酸碱溶液中腐蚀1min,方阻增幅≤3%。

氨-生物燃料双燃料发动机的燃烧与排放特性

摘要:针对双碳目标,应用低碳/零碳燃料是实现内燃机高效清洁燃烧的有效途径。本研究基于一个双燃料柴油机台架开展,缸内直喷燃料分别选用柴油、生物柴油/汽油混合燃料(BG70)和生物柴油/汽油/乙醇混合燃料(BG50E20);氨为进气道喷射,能量替代率为0~28%。试验工况为1 200r/min、0.8 MPa指示平均有效压力(IMEP)。对比分析了不同燃料的一氧化碳(CO)、总碳氢(THC)、氮氧化物(NOx)排放以及颗粒物粒径分布。结果表明:单燃料模式下,BG70和BG50E20的指示热效率高于柴油。BG70的CO排放相比柴油降低30%,但THC和NOx排放在3种燃料中最高。BG70和BG50E20的总颗粒物数量(TPN)排放低于柴油。相比各燃料单燃料模式的燃烧与排放性能,添加氨后的3种燃料的指示热效率降低1%~2%;CO排放增加约1倍;柴油和BG70 的NOx 排放减少接近50%,BG50E20的NOx排放减少约30%。另外,氨的加入对BG70和BG50E20的TPN有显著影响,当氨能量替代率从0增长至28%时,BG70的TPN排放增加20倍。

锌铝镁镀层在加热过程中的组织和耐蚀性

摘要:锌铝镁镀层相对于纯锌镀层具有更好的耐蚀性,结合其特有的划伤自愈、切口保护等特点受到越来越多的钢铁生产企业及下游用户的重视,尤其在材料服役条件较为严苛的环境,客户采用该新型镀层的愿望较为强烈。锌铝镁镀层钢板在使用过程中会遇到热加工和热处理,最常见的是焊接和切割。因此研究锌铝镁镀层在不同温度区间的性能稳定性越来越受到关注。为了探究锌铝镁镀层在温度变化过程中组织和性能的变化,更好地提高镀层耐热性能,研究了不同铝含量的锌铝镁镀层(Zn1A11Mg、Zn55A11Mg)在不同的加温温度(300、500、700℃)进行加热,并随炉保温10min之后镀层内部的组织变化以及对物理和化学性能产出的影响。通过相图计算预测了保温之前镀层的析出相,通过电镜表征热处理后镀层的截面组织和表面组织的形貌,对各个不同的区域进行电镜自带的EDS的成分检测;同时,对镀层中不同相的组成进行了XRD的测试;对不同热处理工艺的试样进行维氏硬度的测试;对试样的耐腐蚀性能用电化学的方法来评估。结果表明,在加热到700℃的时候,Zn1A11Mg和Zn55A11Mg镀层的表面组织和截面组织的形貌都出现了很大的变化,对于Zn1Al1Mg镀层组织明显的分为2层,分别为Zn-Fe层和Fe-Zn层;对于Zn55Al1Mg的镀层组织,产生了从基体生长的柱状富铝相,在钢板和镀层的交界处密集生长;表面组织出现了疏松多孔的组织;电化学的结果显示,2种镀层的耐腐蚀性能都有所下降。维氏硬度的检测表明,2种镀层经过热处理后硬度都得到了提高。