光热发电储能熔盐研究进展

摘要:光热发电是极具发展前景的可再生能源技术,不仅可实现电力能源的梯次利用,还能与风电、光电等互补运行。基于国内外对光热发电技术的研究,本文综述了光热发电用储能熔盐的研究进展。熔盐是光热发电热能存储系统中理想的传储能介质,具有高热容量、高导热性和低黏度等优异的热物理性质。熔盐储能具有储能容量大、储存周期长和成本低等优点,在光热发电、熔盐反应堆、供暖和余热回收等领域广泛应用。本文首先介绍了光热发电技术的优势和发展,接着归纳总结了光热发电用储能熔盐的主要特性和发展,并对新开发配比的熔盐以及熔盐纳米流体热物理性质进行了阐述,最后总结和展望了下一代光热发电储能熔盐的发展。期望了解光热发电储能熔盐的技术发展,为下一代热能传储系统的设计、制造和运行维护提供参考。

钨合金的强韧性研究进展

摘要:钨及其合金具有高熔点、高密度和优异的抗等离子体溅射侵蚀能力等优点,尤其是在高温服役环境下,还具有优异的综合力学性能,是航空航天、武器装备、核工程等不可或缺的关键材料。但在极端高温服役环境下钨合金面临强化相尺度大、分布不均,导致钨合金高温强韧性不足的问题。为解决上述难题,国内外学者开展了钨合金的强韧性研究,通过调控材料成分与组织结构提高钨合金的力学性能。本文主要从形变强化、固溶强化和弥散强化3个方面阐述钨合金的组织调控与强韧化机制,并对钨合金的未来发展趋势与未解决的问题进行展望。

介电弹性体驱动器: 从分子、材料到器件

摘要:介电弹性体是一类响应于外加电场而产生形变的智能高分子材料. 因为其柔顺性、快速响应性和可寻址性, 介电弹性体及其驱动器被视为一种具有广阔应用前景的人工肌肉技术. 分子设计在各个尺度影响介电弹性体的性能: 分子结构改变材料在电场下的极化能力, 聚合物网络结构设计影响材料在力电耦合过程中的变形能力, 影响器件制造的加工方式. 本文结合本课题组在该领域的研究, 从分子、材料和器件三个层次综述介电弹性体的设计原则.

树脂基纤维增强复合材料在绝缘领域的研究进展

摘要:随着科学技术的发展, 复合材料逐渐被应用于高压输电、电子器件等电气电子相关领域。在这种特殊工况中, 设备或材料的绝缘问题成为影响其使用性能和寿命的关键。环氧树脂、聚丙烯等多种热固性、热塑性材料及其复合材料表现了出色的绝缘性能, 并同时具备良好的机械性能, 为电气电力电子设备提供了新的选择。本文针对复合材料在绝缘领域中的应用, 综述了材料本征性能及材料改性技术等方面的研究进展, 并对不同绝缘复合材料的应用进行了总结。

TiAl基合金高温防护及热障涂层体系研究进展

摘要:TiAl基合金以其低密度、高比强度、耐烧蚀、良好的高温力学性能等优点成为新型轻质高温结构候选材料,自20世纪70年代以来备受关注。随着各种强韧化措施的研究不断深入,TiAl基合金的室温脆性问题逐步得到了解决。TiAl基合金成功应用于航空发动机叶片、航天飞行器蒙皮、舵翼、汽车排气阀等。然而,TiAl基合金高温抗氧化性能不足,限制了其作为高温零部件的应用。目前,主要通过整体合金化以及表面改性两种方式来改善TiAl基合金的高温抗氧化性能。整体合金化是在合金中添加Nb、Si、Mo、W、稀土等合金元素,促使合金表面形成致密的氧化层并提高氧化层与基体的结合力;表面改性主要包括表面合金化和表面涂层两种途径,表面合金化技术一般采用热扩散、离子注入、预氧化、激光表面合金化等方法,表面涂层技术是利用不同种类的涂层改善基体的表面性能,例如Ti-Al-X体系涂层、MCrAlY热障涂层、陶瓷涂层、复合涂层。热障涂层,作为一种表面改性中的涂层材料,具有优异的抗氧化性能以及长期服役性能。当应用于TiAl基合金表面时,热障涂层能够有效提升合金的高温抗氧化性能。但两者结合也存在如下问题,热生长氧化物的过度生长导致界面失效,以及涂层与基体元素互扩散严重,导致热障涂层/TiAl合金体系长期服役性能减弱。本文归纳并分析了TiAl基合金的高温氧化行为,分别从整体合金化以及表面改性两个方面综述了TiAl基合金高温防护的影响因素和作用机理,分析了热障涂层应用在TiAl合金表面所面临的问题并提出了改进方案,以期为提高TiAl基合金的抗高温氧化性能及发展热障涂层/TiAl合金体系提供参考。

GaN HEMT器件表面钝化研究进展

摘要:作为第三代半导体材料之一,GaN 凭借其优异的材料特性,如较高的击穿场强、较高的电子迁移率以及较好的热导率等,在制备高频、高功率及高击穿电压的AlGaN/GaN HEMT 器件方面得到广泛应用。然而,目前电流崩塌、栅泄漏电流、频率色散等一系列可靠性问题制约着AlGaN/GaNHEMT 器件的大规模应用。表面钝化被认为是改善这些问题最有效的方法之一。对电流崩塌、界面态等的测试表征方法等进行了总结,综述了目前GaN表面钝化的研究进展。

增强钛酸铋钠基陶瓷储能研究进展

摘要:陶瓷电容器由于较高的能量储存密度、高的大功率充放电速率和较低的成本等优势,在脉冲功率技术储能系统方面具有应用潜力,得到广泛研究。含铅陶瓷电容器虽然表现出优异的性能,但铅元素对环境和人类健康有着潜在的危害,因此开发无铅电介质电容器成为当前的研究重点。钛酸铋钠( BNT) 由于具有较高的极化能力,在众多无铅电介质储能材料中脱颖而出。然而由于其内部电畴尺寸较大,畴与畴之间相互作用力较强,在撤去电场后,电畴无法迅速复原,导致其剩余极化较大; 再者,BNT 陶瓷击穿场强较低,并且在制备的过程中Bi3+ 和Na+ 挥发导致微观结构和组成成分上的不均性,这些都影响了材料的储能性能。本文针对BNT 陶瓷的上述问题,从增强弛豫效果、提升击穿场强、调控相组成、采取缺陷工程策略和设计多层化结构五个方面综述了近年来提升BNT 陶瓷储能性能的方法,并对这些方法进行综合分析,为改性BNT 基储能陶瓷提供参考。

人造金刚石的合成机理研究现状

摘要:人造金刚石合成机理的研究符合发展新质生产力的内在要求,可以高效指导优质金刚石晶体材料的制备,特别是对合成边界条件的预测和探究,形核和长大过程的控制,性能的调控和修饰等具有重要作用。本文就目前金刚石合成方法中的高温高压法、爆轰法、气相沉积法的相关合成机理进行详细的阐述,以期对金刚石的合成过程有更加深入的了解。由于目前的技术条件无法对合成过程进行直接实时观察,对人造金刚石的合成机理暂未形成统一的认识,上述理论研究方法主要通过对实验过程和合成前后产物的分析进行推理。笔者认为借助于分子动力学等方法进行模拟仿真,同时利用原位测量设备如原位X射线进行实时监测,结合合成过程中的其他表征,未来有望进一步揭示人造金刚石合成的本质。