基于深度学习钢中非金属夹杂物图像识别

摘要:炼钢过程中钢水易和炉渣、耐火材料、气氛等相互作用形成非金属夹杂物,非金属夹杂物会破坏钢基体的连续性,增加钢组织的不均匀性,进而影响钢铁材料的塑性、韧性、抗疲劳强度等力学性能,成形过程中也易引起产品缺陷。夹杂物的定性检测一般通过扫描电子显微电镜(SEM)和能谱仪(EDS),但耗时较长、随机性也较大。因此,非金属夹杂物的快速检测和识别对改进炼钢工艺至关重要。近年来,随着计算机视觉技术的日渐成熟,基于区域的卷积神经网络(RCNN,region-basedconvolutionalneuralnetwork)算法经过多代演化,并添加了掩码分支网络,形成了Mask-RCNN。Mask-RCNN既能实现夹杂物边框的准确定位,也能实现图像分割和识别分类,可有效应用于夹杂物分割和识别。采用计算机视觉(CV)任务中Mask-RCNN目标检测算法,对低密度钢中典型AlN、Al2O3、MnS和AlN-MnS4类非金属夹杂物的SEM 图片进行训练,经过10000次的迭代训练后,对各类型夹杂物进行边框定位、图像分割及识别分类,并对测试集进行验证,实现了4类夹杂物边框的准确定位和图像分割。所选用模型对夹杂物检测识别效果较好,准确率高,4类目标夹杂物中,MnS和AlN-MnS夹杂物识别准确率达到100%,AlN夹杂物的识别准确率为95.91%,Al2O3夹杂物的识别准确率为83.33%。

精锻机关键技术研究进展

摘要: 精锻机广泛应用于国防、航空航天领域特殊原材料的加工, 已经成为“大国重器”。介绍了精锻机主机锻造箱的最新研究成果。基于锤头运动方式的不同对主机锻造箱进行区分, 并总结了其外部箱体和内部锤头的设计及优化过程。同时, 对有关操作机夹头结构的研究进行了梳理。结合精锻机工作原理, 分类论述了锻造过程中锤头同步运动、夹头旋转和操作机轴向进给的控制难点及解决方法。概述了精锻机整体控制系统的研究现状, 并在此基础上提出了专用数控系统的设计。探究了精锻机工艺参数对锻件质量的影响, 提出了采用仿真优化与实时监测相结合的方法来提高锻造效率和精度。最后, 总结了精锻机设备的全面国产化研发思路, 展望了精锻机的发展方向。

海洋环境服役飞机发动机镁合金使用要求和研究方向分析

摘要:对适航标准、通用规范的分析显示,目前国内外针对镁合金在飞机发动机上的使用要求仅发布了“应尽量少使用镁合金”等指导性的原则,而没有明确地规定镁合金应符合的具体限定条件,特别是海洋环境中必须采用的防护体系。针对飞机发动机用镁合金材料和防护工艺基础腐蚀性能数据不足,无法有效支撑材料、工艺选用和海洋环境适应性评价的现状,建议结合服役过程中镁合金结构遭遇的最严酷腐蚀环境,建立实验室加速实验当量环境谱,开展镁合金典型防护工艺的实验室加速实验及自然环境试验,确定腐蚀防护性能。重点建立防护体系破损镁合金试样腐蚀累积量随时间的变化规律,并与海洋环境服役飞机发动机用铝合金的试验结果进行对比,提出镁合金试验考核评价准则。开展镁合金及异种材料连接结构的实验室加速实验,验证典型结构的环境适应性。

飞机起落架用超高强钢应力腐蚀开裂研究进展

摘要:概述了飞机起落架用超高强钢的发展历程,简要介绍了超高强钢应力腐蚀开裂机理和模型,总结了各种应力腐蚀开裂研究手段和氢表征方法及其特点,重点论述了合金成分、微观组织结构、应力和环境等因素对超高强钢应力腐蚀开裂的影响。最后,对该领域今后的研究重点提出了建议。

激光增材制造技术发展及在航天领域的应用进展

摘要:增材制造(AM)技术作为近30多年来发展起来的新型数字化制造技术,具有快速制造复杂结构产品、高效利用原材料、可高度优化产品结构及适应个性化小批量生产等优点,非常契合航天装备日益整体化、复杂化、轻量化、结构功能一体化制造需求,为传统航天制造业的转型升级提供了巨大契机。近年来,以金属粉末为原材料、以激光为热源的激光增材制造(LAM)技术已成为AM技术领域最为热门的研究方向之一,其在航天领域的应用范围已从零部件级逐渐发展至整机级,且正在迈向工业化和智能化。本文针对航天领域广泛应用的3类典型轻质高强金属材料(铝合金、钛合金及镍基高温合金)、3类典型结构(大型整体结构、异种金属结构、发动机整机结构),介绍了近年来国内外LAM技术的发展及在航天领域的应用进展,分析了当前存在的问题和不足,并对未来LAM技术潜在研究发展方向进行了展望。

高熵陶瓷在热障涂层与环境障涂层中的研究进展

摘要:热障涂层(TBCs)和环境障涂层(EBCs)是航空发动机的关键技术之一。 TBCs可以大幅提高发动机高温合金热端部件的工作温度, EBCs可以有效保护发动机陶瓷基复合材料高温部件。高熵陶瓷(HECs)一般指的是多种组分(5种或以上)以等原子比或接近等原子比形成的固溶体, 其性能具有“鸡尾酒”效应, 展现出常规陶瓷材料不具备的优异性能。 HECs概念被提出以来已经在很多领域被广泛研究,成为陶瓷材料研究领域的热点。在TBCs与EBCs领域,研究者们对HECs也开展了大量的研究工作,取得了很多研究成果。对国内外已经报道可以用于TBCs和EBCs的新型HECs材料进行了分类总结,介绍了它们的制备方法、 晶体结构、热导率、热膨胀系数、力学性能 环境沉积物(CMAS)腐蚀行为以及HECs涂层的制备与性能,并对HECs在TBCs与EBCs中的发展前景进行了展望。

纳米非晶及其在生物医学中的应用

摘要:晶态合金在人类发展史上占据了数千年的历史,不过近年来,非晶合金由于具有更高的强度、韧性、耐腐蚀性、耐磨性和生物兼容性在生物医学工程领域展现出更广阔的应用前景。然而,由于非晶合金处于亚稳态,热稳定性较差,而纳米结构的引入可以通过原子弛豫降低界面自由能,增强非晶材料的热稳定性,同时可以提高表面与细胞的有效接触面积,增强其生物相容性。因此,纳米结构与非晶材料的结合是解决块体非晶合金(BMG)应用局限性的一种有效方法。综述了BMG和纳米非晶(NG)的特点及其在生物医学中的应用,介绍了NG的优越性能以及主要制备方法,并将合金、BMG和NG在生物医学中的应用做了简单比较,展示了NG在生物医学一些特别领域的独特应用和光明前景。此外,就NG目前遇到的困难挑战和未来发展方向进行了展望。

车载高质量密度固态储氢材料研究进展

摘要:高密度储氢是制约氢燃料电池汽车发展的技术瓶颈之一,相较于高压气态和低温液态等储氢方式,固态储氢体积储氢密度高、安全性好,发展前景良好。分析和总结了燃料电池电动汽车的应用对车载固态储氢的技术要求,包括固态储氢材料的储氢密度、吸放氢动力学、热力学、可逆性、循环寿命、成本以及安全性等;介绍了氢化镁、硼氢化物、铝氢化物、氨基化物等高密度储氢材料的储氢原理及其优缺点,综述了纳米化改性、催化剂改性、元素掺杂改性和构筑复合储氢体系等改善高密度固态储氢材料性能方法,重点评述了采用不同改进措施的氢化镁、硼氢化物、铝氢化物、氨基化物的研究进展。通过分析对比不同体系以及不同改进措施下的固态储氢材料及其性能,总结出研发采用轻质多孔框架材料并配合高效轻质催化剂的复合材料,是改善固态储氢性能的有效途径。

碳基负极材料储钾应用及机制研究进展

摘要:因钾资源储量丰富,价格低廉,且具有类似于锂的物化特性,钾离子电池(KIBs)的推广应用可解决当前锂离子电池供不应求的问题。比较钠离子而言,钾离子可在商业化石墨负极中可逆嵌脱,这对于钾离子电池的产业化发展具有重大意义。然而钾离子因尺寸较大,嵌脱行为缓慢,引起的体积膨胀剧烈,成为电极材料面临的共性问题。近年来,为寻找具有良好嵌钾能力的材料,多种类型的电极体系被开发出来,其中碳基材料因制备简单、廉价环保、稳定性好的特点,被视为最具储钾前景的关键材料。本文系统概述了几种代表性碳基负极材料(如石墨、石墨烯、硬碳、软碳)在KIBs中的研究现状,阐述了各自存在的优势与不足;重点探讨了碳基材料的储钾机制,分析了由钾离子插层、吸附、填充行为组成的3种储钾机制及对电化学性能的影响,并指出在电极表面发生的离子吸附和填充方式呈现出电容效应,更适合于高性能的可逆储钾。最后,对KIBs的下一步研究方向和应用前景进行展望。

水系锌离子电池钒基正极材料储能机制、存在的问题及其改性策略

摘要:中性或弱酸性体系下的水系锌离子电池(AZIBs)因高安全、低成本及高能量密度等特性成为近年来研究的热点。其中,备受关注的钒基化合物具有比容量高、结构灵活多样等优点在AZIBs领域展现出了广阔的市场应用前景。主要总结了钒基材料的4种反应机制并叙述了钒基正极材料在AZIBs中的研究进展, 在AZIBs中,Zn2+有着较大的离子半径,随着循环的进行Zn2+不断嵌入/脱出, 引起材料结构的变化,从而导致活性物质从导电集流体上脱落,严重影响电池的循环寿命; 钒基材料本身的导电性能较差,不利于电子的转移;钒基材料在AZIBs中的电压窗口比较窄。针对这些问题,主要从离子和分子预嵌、表面修饰和复合材料制备、缺陷设计及金属离子掺杂、自支撑电极结构设计、电解液优化等5个方面进行了总结,并对未来AZIBs钒基正极材料的研究方向进行了总结与展望。